Supplementary material.

A Noble Nexus: A Phosphino-Phen Ligand for Tethering Precious Metals

Paul D. Newman,*a James A. Platts,^a Basheer Alrashidi,^a Simon J. A. Pope^a and Benson M.

Kariuki^a

⁺School of Chemistry, Cardiff University, Cardiff, Wales, UK, CF10 3AT.

<u>Contents</u>

Figure S1. ³¹ P{ ¹ H} NMR spectrum of L1 .	6
Figure S2. ¹ H NMR spectrum of L1 .	7
Figure S3. ¹³ C{ ¹ H} NMR spectrum of L1 .	7
Figure S4. COSY NMR spectrum of L1.	8
Figure S5. HSQC NMR spectrum of L1 .	8
Figure S6. NOESY NMR spectrum of L1 .	9
Figure S7. HRMS (ES ⁺) spectrum of L1 .	10
Figure S8. ³¹ P{ ¹ H} NMR spectrum of L2 .	10
Figure S9. ¹ H NMR spectrum of L2 .	10
Figure S10. ¹³ C{ ¹ H} NMR spectrum of L2 .	11
Figure S11. COSY NMR spectrum of L2.	12
Figure S12. HSQC NMR spectrum of L2.	12
Figure S13. NOESY NMR spectrum of L2 .	13
Figure S14. HRMS (ES ⁺) spectrum of L2 .	13
Figure S15. ³¹ P{ ¹ H} NMR spectrum of RuL1 .	14
Figure S16. ¹ H NMR spectrum of RuL1 .	14
Figure S17. COSY NMR spectrum of RuL1 .	15
Figure S18. HSQC NMR spectrum of RuL1 .	15

Figure S19. NOESY NMR spectrum of RuL1 .	16
Figure S20. HRMS (ES ⁺) spectrum of RuL1 .	17
Figure S21. ³¹ P{ ¹ H} NMR spectrum of RuAuL1 .	17
Figure S22. ¹ H NMR spectrum of RuAuL1 .	18
Figure S23. ¹³ C{ ¹ H} NMR spectrum of RuAuL1 .	19
Figure S24. COSY NMR spectrum of RuAuL1 .	19
Figure S25. HSQC NMR spectrum of RuAuL1 .	20
Figure S26. NOESY NMR spectrum of RuAuL1 .	20
Figure S27. HRMS (ES ⁺) spectrum of RuAuL1 .	21
Figure S28. ³¹ P{ ¹ H} NMR spectrum of ReL1 .	21
Figure S29. ¹ H NMR spectrum of ReL1 .	22
Figure S30. ¹³ C{ ¹ H} NMR spectrum of ReL1 .	23
Figure S31. COSY NMR spectrum of ReL1 .	23
Figure S32. HSQC NMR spectrum of ReL1 .	24
Figure S33. NOESY NMR spectrum of ReL1 .	24
Figure S34. HRMS (ES ⁺) spectrum of ReL1 .	25
Figure S35. ³¹ P{ ¹ H} NMR spectrum of 2ReL1 .	26
Figure S36. ¹ H NMR spectrum of 2ReL1 .	26
Figure S37. COSY NMR spectrum of 2ReL1 .	26
Figure S38. HSQC NMR spectrum of 2ReL1 .	27
Figure S39. HRMS (ES ⁺) spectrum of 2ReL1 .	27
Figure S40. ³¹ P{ ¹ H} NMR spectrum of ReAuL1 .	28
Figure S41. ¹ H NMR spectrum of ReAuL1 .	28
Figure S42. ¹³ C{ ¹ H} NMR spectrum of ReAuL1 .	29
Figure S43. COSY NMR spectrum of ReAuL1 .	29
Figure S44. HSQC NMR spectrum of ReAuL1 .	30
Figure S45. NOESY NMR spectrum of ReAuL1 .	30

Figure S46.	HRMS (ES ⁺) spectrum of ReAuL1 .	31
Figure S47.	³¹ P{ ¹ H} NMR spectrum of ReL2 .	31
Figure S48.	¹ H NMR spectrum of ReL2 .	32
Figure S49.	¹³ C{ ¹ H} NMR spectrum of ReL2 .	32
Figure S50.	HSQC NMR spectrum of ReL2 .	33
Figure S51.	HRMS (ES⁺) spectrum of ReL2 .	33
Figure S52.	³¹ P{ ¹ H} NMR spectrum of 2ReL2 .	34
Figure S53.	¹ H NMR spectrum of 2ReL2 .	34
Figure S54.	¹³ C{ ¹ H} NMR spectrum of 2ReL2 .	35
Figure S55.	COSY NMR spectrum of 2ReL2 .	35
Figure S56.	HSQC NMR spectrum of 2ReL2 .	36
Figure S57.	NOESY NMR spectrum of 2ReL2 .	36
Figure S58.	³¹ P{ ¹ H} NMR spectrum of ReAuL2 .	37
Figure S59.	¹ H NMR spectrum of ReAuL2 .	37
Figure S60.	¹³ C{ ¹ H} NMR spectrum of ReAuL2 .	38
Figure S61.	COSY NMR spectrum of ReAuL2 .	38
Figure S62.	HSQC NMR spectrum of ReAuL2 .	39
Figure S63.	NOESY NMR spectrum of ReAuL2 .	39
Figure S64.	HRMS (ES ⁺) spectrum of ReAuL2 .	40
Figure S65.	³¹ P{ ¹ H} NMR spectrum of AuL1 .	40
Figure S66.	¹ H NMR spectrum of AuL1 .	41
Figure S67.	¹³ C{ ¹ H} NMR spectrum of AuL1 .	42
Figure S68.	HSQC NMR spectrum of AuL1 .	42
Figure S69.	NOESY NMR spectrum of AuL1 .	43
Figure S70.	HRMS (ES ⁺) spectrum of AuL1 .	43
Figure S71.	³¹ P{ ¹ H} NMR spectrum of AuL2 .	44
Figure S72.	¹ H NMR spectrum of AuL2 .	44

Figure S73. ¹³ C{ ¹ H} NMR spectrum of AuL2 .	45
Figure S74. COSY NMR spectrum of AuL2.	46
Figure S75. HSQC NMR spectrum of AuL2.	46
Figure S76. NOESY NMR spectrum of AuL2 .	47
Figure S77. HRMS (ES ⁺) spectrum of AuL2 .	48
Figure S78. ³¹ P{ ¹ H} NMR spectrum of IrAuL1 .	48
Figure S79. ¹ H NMR spectrum of IrAuL1.	48
Figure S80. ¹³ C{ ¹ H} NMR spectrum of IrAuL1 .	49
Figure S81. COSY NMR spectrum of IrAuL1.	50
Figure S82. HSQC NMR spectrum of IrAuL1.	50
Figure S83. NOESY NMR spectrum of IrAuL1.	51
Figure S84. HRMS (ES ⁺) spectrum of IrAuL1 .	51
Figure S85. ³¹ P{ ¹ H} NMR spectrum of IrAuL2 .	52
Figure S86. ¹ H NMR spectrum of IrAuL2 .	52
Figure S87. ¹³ C{ ¹ H} NMR spectrum of IrAuL2 .	53
Figure S88. COSY NMR spectrum of IrAuL2.	54
Figure S89. HSQC NMR spectrum of IrAuL2.	54
Figure S90. NOESY NMR spectrum of IrAuL2.	55
Figure S91. HRMS (ES ⁺) spectrum of IrAuL2 .	55
Figure S92. ³¹ P{ ¹ H} NMR spectrum of RePtL1 .	56
Figure S93. ¹ H NMR spectrum of RePtL1 .	57
Figure S94. ¹³ C{ ¹ H} NMR spectrum of RePtL1 .	58
Figure S95. COSY NMR spectrum of RePtL1 .	58
Figure S96. NOESY NMR spectrum of RePtL1 .	59
Figure S97. HRMS (ES ⁺) spectrum of RePtL1 .	59
Figure S98. ³¹ P{ ¹ H} NMR spectrum of RePdL1 .	60
Figure S99. ¹ H NMR spectrum of RePdL1 .	60

Figure S100. COSY NMR spectrum of RePdL1 .	61
Figure S101. NOESY NMR spectrum of RePdL1 .	61
Figure S102. HRMS (ES ⁺) spectrum of RePdL1 .	62
Figure S103. ³¹ P{ ¹ H} NMR spectrum of IrPtL1.	62
Figure S104. ¹ H NMR spectrum of IrPtL1.	63
Figure S105. COSY NMR spectrum of IrPtL1.	63
Figure S106. HSQC NMR spectrum of IrPtL1.	64
Figure S107. HRMS (ES ⁺) spectrum of IrPtL1.	64
Figure S108. ³¹ P{ ¹ H} NMR spectrum of IrPdL1.	65
Figure S109. ¹ H NMR spectrum of IrPdL1.	65
Figure S110. COSY NMR spectrum of IrPdL1.	66
Figure S111. HSQC NMR spectrum of IrPdL1.	66
Figure S112. NOESY NMR spectrum of IrPdL1.	67
Figure S113. HRMS (ES ⁺) spectrum of IrPdL1.	67
Table S1. Selected ¹ H NMR assignments	68
Figure S114. Electronic spectra of the rhenium complexes	69
Figure S115. Electronic spectra of the ligands, ruthenium and iridium complexes	69
Figure S116. Electronic spectra of the palladium and platinum complexes	70
Table S2. Crystal data and structure refinement for 2ReL1 and 2ReL2 .	71
Table S3. Crystal data and structure refinement for ReAuL2 and AuL1 .	72
Figure S117. Molecular structure of 2ReL1 .	73
Figure S118. Molecular structure of 2ReL2 .	74
Figure S119. Molecular structure of ReAuL2 .	74
Figure S120. Molecular structure of AuL1 .	75
Figure S121. Calculated MOs for L1 and selected complexes.	76
Figure S122. Calculated absorption spectra for L1 and selected complexes.	77

NMR and Mass Spectra

Figure S1. ${}^{31}P{}^{1}H$ NMR spectrum of L1 recorded at 162 MHz in CDCl₃.

Figure S2 ¹H NMR spectra of L1 recorded at 400 MHz in CDCl₃.

Figure S3. ${}^{13}C{}^{1}H$ NMR spectrum of L1 recorded at 75 MHz in CDCl₃.

Figure S4. ¹H-¹H COSY NMR spectrum of L1 recorded at 400 MHz in CDCl₃.

Figure S5. ¹H-¹³C HSQC NMR spectrum of L1 recorded in CDCl₃.

Figure S6. ¹H-¹H NOESY NMR spectrum of L1 recorded at 400 MHz in CDCl₃.

Minimum: Maximum:		5.0	10.0	-1.5 100.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Form	nula		
468.1637	468.1630	0.7	1.5	22.5	928.4	n/a	n/a	C31	H23	N3	Ρ

Figure S7. HRMS (ES⁺) spectrum of L1.

Figure S8. ³¹P{¹H} NMR spectrum of L2 recorded at 162 MHz in CDCl₃.

Figure S9 ¹H NMR spectra of L2 recorded at 400 MHz in CDCl₃.

Figure S12. ¹H-¹³C HSQC NMR spectrum of L2 recorded in CDCl₃.

Figure S14. HRMS (ES⁺) spectrum of L2.

Figure S15. ³¹P{¹H} NMR spectrum of **RuL1** recorded at 162 MHz in d_6 -dmso.

Figure S19. 1 H- 1 H NOESY NMR spectrum of **RuL1** recorded at 400 MHz in d₆-dmso.

Figure S20. HRMS (ES⁺) spectrum of RuL1.

Figure S21. ³¹P{¹H} NMR spectrum of **RuAuL1** recorded at 162 MHz in d_6 -dmso.

Figure S22 ¹H NMR spectra of **RuAuL1** recorded at 400 MHz in d₆-dmso.

Figure S23. ${}^{13}C{}^{1}H$ NMR spectra of RuAuL1 recorded at 75 MHz in d₆-dmso.

Figure S25. ^{1}H - ^{13}C HSQC NMR spectrum of **RuAuL1** recorded in d₆-dmso.

Figure S27. HRMS (ES⁺) spectrum of RuAuL1.

Figure S28. ³¹P{¹H} NMR spectrum of ReL1 recorded at 162 MHz in CDCl₃.

Figure S29 ¹H NMR spectra of ReL1 recorded at 400 MHz in CDCl₃.

Figure S32. ¹H-¹³C HSQC NMR spectrum of ReL1 recorded in CDCl₃.

Figure S33. ¹H-¹H NOESY NMR spectrum of ReL1 recorded at 400 MHz in CDCl₃.

Figure S34. HRMS (ES⁺) spectrum of ReL1.

Figure S35. ${}^{31}P{}^{1}H$ NMR spectrum of **2ReL1** recorded at 162 MHz in d₆-acetone.

Figure S37. ¹H-¹H COSY NMR spectrum of **2ReL1** recorded at 400 MHz in d_6 -acetone.

Figure S38. ¹H-¹³C HSQC NMR spectrum of 2ReL1 recorded in d₆-acetone.

Figure S39. HRMS (ES⁺) spectrum of 2ReL1.

Figure S40. ³¹P{¹H} NMR spectrum of **ReAuL1** recorded at 162 MHz in CD₂Cl₂.

Figure S41 ¹H NMR spectra of **ReAuL1** recorded at 400 MHz in CD₂Cl₂.

Figure S43. $^{1}H^{-1}H$ COSY NMR spectrum of **ReAuL1** recorded at 400 MHz in CD₂Cl₂.

Figure S44. ¹H-¹³C HSQC NMR spectrum of ReAuL1 recorded in CD₂Cl₂.

Figure S45. $^{1}H^{-1}H$ NOESY NMR spectrum of **ReAuL1** recorded at 400 MHz in CD₂Cl₂.

Figure S46. HRMS (ES⁺) spectrum of ReAuL1.

Figure S47. ³¹P{¹H} NMR spectrum of **ReL2** recorded at 162 MHz in d_6 -dmso.

Figure S48. ¹H NMR spectra of ReL2 recorded at 400 MHz in d_6 -dmso.

Figure S51. HRMS (ES⁺) spectrum of ReL2.

Figure S52. ³¹P{¹H} NMR spectrum of 2ReL2 recorded at 162 MHz in CDCl₃.

Figure S54. ¹³C{¹H} NMR spectrum of **2ReL2** recorded at 75 MHz in CDCl₃.

Figure S55. ¹H-¹H COSY NMR spectrum of **2ReL2** recorded at 400 MHz in CDCl₃.

Figure S57. ¹H-¹H NOESY NMR spectrum of 2ReL2 recorded at 400 MHz in CDCl₃.

Figure S58. ³¹P{¹H} NMR spectrum of **ReAuL2** recorded at 162 MHz in CDCl₃.

Figure S61. ¹H-¹H COSY NMR spectrum of **ReAuL2** recorded at 400 MHz in CDCl₃.

F2 [ppm]

39

Figure S64. HRMS (ES⁺) spectrum of ReAuL2.

Figure S65. ³¹P{¹H} NMR spectrum of AuL1 recorded at 162 MHz in CDCl₃.

Figure S70. HRMS (ES⁺) spectrum of AuL1.

Figure S71. ${}^{31}P{}^{1}H$ NMR spectrum of AuL2 recorded at 162 MHz in CDCl₃.

Figure S75. ¹H-¹³C HSQC NMR spectrum of AuL2 recorded in CDCl₃.

Figure S76. ¹H-¹H NOESY NMR spectrum of AuL2 recorded at 400 MHz in CDCl₃.

Figure S77. HRMS (ES⁺) spectrum of AuL2.

Figure S78. ³¹P{¹H} NMR spectrum of **IrAuL1** recorded at 162 MHz in d₆-acetone.

Figure S84. HRMS (ES⁺) spectrum of IrAuL1.

Figure S86. 1 H NMR spectra of IrAuL2 recorded at 400 MHz in d₆-acetone.

Figure S88. $^{1}H^{-1}H$ COSY NMR spectrum of IrAuL2 recorded at 400 MHz in d₆-acetone.

Figure S89. $^{1}H^{-13}C$ HSQC NMR spectrum of IrAuL2 recorded in d₆-acetone.

Figure S90. ¹H-¹H NOESY NMR spectrum of IrAuL2 recorded at 400 MHz in d₆-acetone.

Figure S91. HRMS (ES⁺) spectrum of IrAuL2.

293 K and lower trace at 353 K.

Figure S96. 1 H- 1 H NOESY NMR spectrum of **RePtL1** recorded at 400 MHz in d₆-dmso.

Figure S97. HRMS (ES⁺) spectrum of RePtL1.

Figure S99. ^1H NMR spectra of <code>RePdL1</code> recorded at 400 MHz in <code>CDCl_3</code>.

Figure S102. HRMS (ES⁺) spectrum of RePdL1.

Figure S103. ${}^{31}P{}^{1}H$ NMR spectrum of **IrPtL1** recorded at 162 MHz in d₆-dmso.

Figure S107. HRMS (ES⁺) spectrum of IrPtL1.

Figure S110. 1 H- 1 H COSY NMR spectrum of **IrPdL1** recorded at 400 MHz in d₆-dmso.

Figure S111. ¹H-¹³C HSQC NMR spectrum of IrPdL1 recorded in d_6 -dmso.

Figure S113. HRMS (ES⁺) spectrum of IrPdL1.

	H1	H2	H3	H4	H5	H6	H7	H8
L1	9.01	7.49	7.99	6.64	8.25	7.44	9.09	9.09
ReL1	9.20	7.71	8.29	6.90	8.29	7.60	9.27	9.01
2ReL1	9.52	8.23	9.17	8.07		7.54	9.44	9.25
ReAuL1	9.17	7.76	8.60	7.51		7.50	9.20	9.02
RuL1	8.24	7.60	7.98	8.04	7.92		8.51	9.14
RuAuL1	8.20	7.75	8.53	7.55				9.14
IrAuL1	8.20	7.87	8.62	7.59	7.87	7.67	8.23	9.21
L2	8.80	7.39	7.88	6.61			9.00	
ReL2	8.85	7.69	8.23	6.50	8.79	7.84	9.25	
2ReL2	9.27	7.78	8.38	7.62	9.20	7.91	9.41	
ReAuL2	8.75		8.38	6.49	7.94		8.89	
RuAuL2								
IrAuL2	7.86	7.60	8.28	6.80	8.22	7.75	8.68	
AuL1	9.03		8.28	7.23	7.33	7.71	9.05	9.08
AuL2	8.72		7.67	6.33	8.17		8.95	
RePtL1	9.43ª	7.87	8.59	7.62	9.00	8.15	9.43ª	9.49
RePdL1	9.17ª	7.48	8.25	7.53	7.55	7.33	9.17ª	10.03
IrPdL1	9.09	7.43	8.64	7.54	8.95	7.33	9.07	9.62

^a overlapping

Table S1. ¹H NMR assignments (based on the structure below) for the aromatic hydrogens of the phenanthroline fragment in the ligands and complexes.

Spectroscopic data.

Figure S114. Electronic spectra of the rhenium complexes recorded as 1×10^{-5} M solutions in CH₂Cl₂.

Figure S115. Electronic spectra of the ligands, ruthenium and iridium complexes recorded as 1×10^{-5} M solutions in CH_2Cl_2 .

Figure S116. Electronic spectra of the palladium and platinum complexes recorded as 1×10^{-5} M solutions in CH₂Cl₂.

Crystallographic data

Compound (Identification	2ReL1	2ReL2	
code)			
CCDC reference			
Empirical formula	$C_{39}H_{26}Cl_6N_3O_6PRe_2$	C _{43.5} H ₃₈ Cl ₂ N ₃ O ₈ PRe ₂	
Formula weight	1248.70	1205.04	
Temperature /K	293(2)	200(2)	
Wavelength /Å	1.54184	1.54184	
Crystal system	Monoclinic	Triclinic	
Space group	P 2 ₁ /c	P -1	
a/Å	15.8776(2)	11.0207(6)	
b/Å	14.0772(6)	11.2629(5)	
c/Å	19.3595(3)	20.4684(9)	
α/°	90	87.135(4)	
β/°	101.2970(10)	84.370(4)	
γ/°	90	63.675(4)	
Volume/Å ³	4243.25(11)	2266.1(2)	
Ζ	4	2	
Density (calculated)/ Mgm ⁻³	1.955	1.766	
Absorption coefficient/ mm ⁻¹	15.232	12.148	
S1Crystal size/ mm ³	0.200x0.160x0.070	0.250x0.140x0.100	
Reflections collected	8357	8777	
Independent reflections	7286	6841	
R(int)	0.0336	0.0393	
Data / restraints / parameters	8357 / 0 / 514	8777 / 1070 / 686	
Goodness-of-fit on F ²	1.020	1.076	
R1, wR2 [I>2σ(I)]	0.0304, 0.0750	0.0391, 0.0971	
R1, wR2 (all data)	0.0369, 0.0794	0.0570, 0.1117	
Largest diff. peak and hole e.Å ⁻³	2.066 and -1.381	1.569 and -1.330	

 Table S2. Crystal data and structure refinement for 2ReL1 and 2ReL2.

Compound (Identification	ReAuL2	AuL1	
code)			
CCDC reference			
Empirical formula	C ₃₇ H ₂₇ AuCl ₁₁ N ₃ O ₃ PRe	C ₃₁ H ₂₂ AuClN ₃ P	
Formula weight	1365.70	699.90	
Temperature /K	200(2)	200(2)	
Wavelength /Å	0.71073	0.71073	
Crystal system	Triclinic	Triclinic	
Space group	P -1	P -1	
a/Å	10.9443(3)	9.7321(2)	
b/Å	13.9344(4)	10.5512(3)	
c/Å	16.9978(5)	14.1403(3)	
α/°	74.830(2)	92.362(2)	
<u>β/°</u>	78.584(2)	100.776(2)	
γ/°	67.004(2)	112.287(3)	
Volume/Å ³	2289.66(12)	1309.76(6)	
Ζ	2	2	
Density (calculated)/ Mgm ⁻³	1.981	1.775	
Absorption coefficient/ mm ⁻¹	6.557	5.805	
S1Crystal size/ mm ³	0.370x0.310x0.170	0.200x0.150x0.060	
Reflections collected	11346	6479	
Independent reflections	9144	5652	
R(int)	0.0447	0.0424	
Data / restraints / parameters	11346 / 487 / 626	6479 / 0 / 334	
Goodness-of-fit on F ²	1.060	1.081	
R1, wR2 [I>2σ(I)]	0.0399, 0.0995	0.0329, 0.0635	
R1, wR2 (all data)	0.0543, 0.1109	0.0437, 0.0681	
Largest diff. peak and hole e.Å ⁻³	1.759 and -1.505	1.319 and -1.161	

 Table S3. Crystal data and structure refinement for ReAuL2 and AuL1.

Figure S117. Molecular structure of **2ReL1**. Hydrogen atoms and residual solvent have been omitted for clarity. Selected bond lengths (Å) and angles (°): Re1-N1 2.176(4); Re1-N2 2.177(4); Re1-C32 1.916(6); Re1-C33 1.918(7); Re1-C23 1.939(6); Re1-Cl1 2.4734(14); Re2-N3 2.212(4); Re2-P1 2.4335(10); Re2-C35 1.968(5); Re2-C36 1.909(5); Re2-C37 1.933(5); Re2-Cl2 2.4868(10); N1–Re1-C33 171.9(2); N2–Re1-C32 174.1(2); Cl1–Re1-C34 176.02(18); N3–Re2-C37 173.61(16); P1–Re2-C35 174.73(14); Cl2–Re2-C36 177.27(14).

Figure S118. Molecular structure of **2ReL2**. Hydrogen atoms and residual solvent have been omitted for clarity. Selected bond lengths (Å) and angles (°): Re1-N1 2.190(5); Re1-N2 2.182(5); Re1-C13 1.925(7); Re1-C14 1.941(8); Re1-C15 1.917(9); Re1-Cl1 2.4779(16); Re2-N3 2.315(6); Re2-P1 2.491(2); Re2-C16 1.967(8); Re2-C17 1.902(9); Re2-C18 1.901(8); Re2-Cl2 2.4886(18); N2–Re1-C13 171.8(2); N1–Re1-C14 173.8(3); Cl1–Re1-C15 176.7(2); N3–Re2-C18 174.7(2); P1–Re2-C16 171.1(3); Cl2–Re2-C17 174.0(2).

Figure S119. Molecular structure of **ReAuL2**. Hydrogen atoms and residual solvent have been omitted for clarity. Selected bond lengths (Å) and angles (°): Re1-N1 2.165(5); Re1-N2 2.191(5); Re1-C32 1.928(7); Re1-C33 1.913(7); Re1-C34 1.904(7); Re1-Cl1 2.4785(15); Au1-P1 2.2364(15); Au1-Cl2 2.2866(16); N1–Re1-C33 171.6(2); N2–Re1-C32 172.7(2); Cl1–Re1-C34 176.5(2); P1-Au1-Cl1 177.42(6).

Figure S120. Molecular structure of **AuL1**. Hydrogen atoms and residual solvent have been omitted for clarity. Selected bond lengths (Å) and angles (°):Au1-P1 2.2300(10); Au1-Cl1 2.2810(11); P1–Au1-Cl1 175.80(4).

Calculations

Figure S121. Calculated MOs for L1 and selected complexes.

Absorption in CH2Cl2 (CAM-B3LYP/def2svp)

Figure S122. Calculated absorption spectra for L1 and selected complexes.