Supporting information for

Multifunctional chiral metal hydrogen-bonded organic frameworks constructed from lanthanide ions with trigonal prismatic coordination environment

Guo Peng,*a Guo-Xing Zhou, a Xiang-Tao Dong, a Yong-Bo Peng, a Rong-Yan

Zhang,^a Ying-Zhao Ma,^b and Xiao-Ming Ren*ac

^a State Key Laboratory of Materials-Oriented Chemical Engineering, School of

Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.

R. China

^b Chongqing Key Laboratory of Green Synthesis and Application, College of

Chemistry, Chongqing Normal University, Chongqing 401331, China

^c State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing

210093, P. R. China

E-mail: guopeng@njtech.edu.cn, xmren@njtech.edu.cn

Table S1 Crystallographic data and structure refinement for complexes D-1, L-1, D-2

	D-1	L-1	D-2	L-2
Formula	$C_{18}H_{37}DyN_{3}O_{17}P_{3}$	$C_{18}H_{37}DyN_{3}O_{17}P_{3}$	$C_{18}H_{37}N_3O_{17}P_3Yb$	$C_{18}H_{37}N_3O_{17}P_3Yb$
$M_{\rm r}$ (g mol ⁻¹)	822.91	822.91	833.45	833.45
Crystal	Tetragonal	Tetragonal	Tetragonal	Tetragonal
system				
Space group	P43	P4 ₁	P43	P41
<i>T</i> (K)	296	296	296	296
a (Å)	12.4345(3)	12.4378(3)	12.4178(7)	12.4055(9)
b (Å)	12.4345(3)	12.4378(3)	12.4178(7)	12.4055(9)
c (Å)	18.7179(11)	18.7219(10)	18.6104(11)	18.6422(14)

and **L-2**.

α (°)	90	90	90	90
β (°)	90	90	90	90
γ (°)	90	90	90	90
$V(Å^3)$	2894.1(2)	2896.3(2)	2869.8(4)	2869.0(3)
Z	4	4	4	4
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.889	1.887	1.927	1.930
μ (mm ⁻¹)	2.829	2.827	3.508	3.509
F(000)	1652	1652	1664	1668
Reflns	19262	30796	16775	15861
collected				
Unique	4953	9243	4931	4768
reflns				
$R_{\rm int}$	0.0559	0.0619	0.0579	0.0226
GOF	1.042	1.055	1.022	1.325
$R_1(\mathbf{I} > 2\sigma)$	0.0250	0.0356	0.0250	0.0221
w R_2 (all	0.0612	0.0754	0.0572	0.0813
data)				
Max. diff.	1.068/-0.671	2.101/ -1.424	0.858/-0.575	1.974/-0.965
peak / hole				
(e Å-3)				
Flack	0.075(11)	0.040(9)	0.074(10)	-0.008(3)
parameter				

Fig. S1 Measured and simulated PXRD patterns of complexes D-1, L-1, D-2 and L-2.

Fig. S2 IR spectra of complexes D-1, L-1, D-2 and L-2.

Table S2 Continuous shape measures (CShM) for complex D-1.

D-1
32.793
18.607
5.086
3.931
22.568

HP-6 = Hexagon, PPY-6 = Pentagonal pyramid, OC-6 = Octahedron, **TPR-6 = Trigonal prism**, JPPY-6 = Johnson pentagonal pyramid J2

D-1 Dy(1)-O(1) 2.267(4) Dy(1)-O(2)#1 2.259(4) Dy(1)-O(6) 2.225(4) Dy(1)-O(7)#2 2.253(5) Dy(1)-O(1)#1 2.252(4) Dy(1)-O(12)#2 2.251(5) O(2)#1-Dy(1)-O(1) 87.79(16) O(6)-Dy(1)-O(1)81.39(16) O(6)-Dy(1)-O(2)#1 111.39(17) O(6)-Dy(1)-O(7)#2 85.80(17) O(6)-Dy(1)-O(1)#1 80.65(16) 155.99(17) O(6)-Dy(1)-O(12)#2

Table S3 Selected bond lengths (Å) and angles (°) for D-1.

O(7)#2-Dy(1)-O(1)	111.02(18)
O(7)#2-Dy(1)-O(2)#1	156.70(18)
O(1)#1-Dy(1)-O(1)	154.83(17)
O(1)#1-Dy(1)-O(2)#1	82.52(17)
O(1)#1-Dy(1)-O(7)#2	85.07(19)
O(12)#2-Dy(1)-O(1)	82.45(16)
O(12)#2-Dy(1)-O(2)#1	85.54(18)
O(12)#2-Dy(1)-O(7)#2	83.56(17)
O(12)#2-Dy(1)-O(1)#1	119.63(17)

Symmetry codes: #1 y, 1-x, 0.25+z; #2 1-y, x, -0.25+z.

_

Scheme S1 The coordination mode of PMP ligand in D-1.

D-H···A	d(D-H)/ Å	d(H···A)∕ Å	d(D…A)∕ Å	<(DHA)/ °
N1-H1 …O14	0.98	1.80	2.707(7)	153
N2-H2 …O4	0.98	1.95	2.852(7)	152
03-Н3 …015	0.82	1.78	2.551(7)	156
N3-H3A …O9	0.98	1.87	2.774(7)	151
O8-H8 ⋯O5	0.82	1.72	2.443(7)	146
O13-H13 …O10	0.82	1.73	2.438(7)	143
O16-H16C …O17	0.85	2.07	2.871(13)	156
O16-H16D …O5	0.85	2.18	2.957(9)	152
017-H17A …016	0.85	2.10	2.781(13)	137
O17-H17B …O10	0.85	2.45	3.005(10)	123
C1-H1B …O4	0.97	2.55	3.111(8)	117
C4-H4B …O13	0.97	2.37	3.324(9)	169
C8-H8B …O7	0.97	2.59	3.147(9)	117
С11-Н11 …015	0.98	2.57	3.420(8)	145
С13-Н13В …О14	0.97	2.48	3.034(8)	116
C14-H14B …O12	0.97	2.55	3.016(9)	109

Table S4 Hydrogen bonds in D-1.

Fig. S3 CD spectra of complexes D-2 and L-2.

Fig. S4 M vs. H plots for L-1 (left) and L-2 (right).

Fig. S5 M vs. HT^{-1} plots for L-1 (left) and L-2 (right).

Fig. S6 Temperature dependence of in-phase (left) and out-of-phase (right) ac susceptibility data at a zero dc field for L-1.

Fig. S7 Frequency dependence of in-phase (left) and out-of-phase (right) ac susceptibility signals under different dc fields at 2K for L-1.

Fig. S8 Field dependence of the characteristic frequency for L-1 at 2K.

Fig. S9 Frequency dependence of in-phase (left) ac susceptibility data under a 1600Oe dc field for L-1. Cole–Cole plots for L-1 (right). The solid lines are the best fits to a generalized Debye model.

T/K	$\chi_{\rm S}$ / cm ⁻³ mol ⁻¹	$\chi_{\rm T}$ / cm ⁻³ mol ⁻¹	τ / s	α	R
3.6	4.17E-01	3.43E+00	3.63E-02	3.17E-01	1.04E-01
4	3.73E-01	2.94E+00	1.62E-02	2.48E-01	5.84E-02
4.4	3.26E-01	2.62E+00	7.86E-03	2.05E-01	2.68E-02
4.8	2.79E-01	2.40E+00	4.07E-03	1.76E-01	1.22E-02
5.2	2.47E-01	2.21E+00	2.23E-03	1.48E-01	6.90E-03
5.6	2.22E-01	2.06E+00	1.30E-03	1.26E-01	4.99E-03
6	1.96E-01	1.93E+00	7.91E-04	1.10E-01	3.48E-03
6.4	1.85E-01	1.81E+00	5.08E-04	9.36E-02	2.55E-03
6.8	1.79E-01	1.71E+00	3.40E-04	7.70E-02	2.38E-03
7.2	1.64E-01	1.62E+00	2.33E-04	6.52E-02	1.72E-03
7.6	1.46E-01	1.54E+00	1.63E-04	5.83E-02	1.50E-03
8	2.89E-02	1.47E+00	1.07E-04	7.61E-02	5.56E-03
8.4	1.18E-13	1.40E+00	7.66E-05	5.86E-02	8.38E-04
8.8	2.13E-13	1.34E+00	5.83E-05	4.01E-02	1.03E-03
9.2	8.01E-13	1.28E+00	4.59E-05	1.80E-02	1.33E-03

Table S5 Cole-Cole parameters of L-1 at a 1600 Oe dc field.

Fig. S10 Frequency dependence of in-phase (left) and out-of-phase (right) ac susceptibility signals under different dc fields at 2 K for L-2.

Fig. S11 Field dependence of the characteristic frequency for L-2 at 2K.

Fig. S12 Frequency dependence of in-phase (left) ac susceptibility data under a 2000Oe dc field for L-2. Cole–Cole plots for L-2 (right). The solid lines are the best fits to a generalized Debye model.

T/\mathbf{K}	$\chi_{\rm S}$ / cm ⁻³ mol ⁻¹	$\chi_{\rm T}$ / cm ⁻³ mol ⁻¹	τ / s	α	R
2	2.19E-01	6.56E-01	1.99E-03	1.81E-01	3.64E-04
2.3	2.12E-01	5.89E-01	1.51E-03	1.71E-01	5.71E-04
2.6	2.02E-01	5.28E-01	1.09E-03	1.49E-01	1.83E-04
2.9	1.92E-01	4.82E-01	7.47E-04	1.24E-01	3.88E-04
3.2	1.85E-01	4.42E-01	4.60E-04	8.23E-02	1.57E-04
3.5	1.73E-01	4.09E-01	2.57E-04	6.60E-02	1.32E-04
3.8	1.52E-01	3.82E-01	1.27E-04	8.71E-02	9.32E-05
4.1	4.19E-02	3.58E-01	3.65E-05	1.52E-01	4.44E-04

Table S6 Cole-Cole parameters of L-2 at a 2000 Oe dc field.

Fig. S13 Nyquist plots of D-1 at different temperatures under 98% relative humidity (left). The $\ln(\sigma T)$ versus 1000/T curve of D-1 (right). The red solid lines are the best fit using the Arrhenius law.

Table S7 The proton conductivity of **D-1**, **L-1** and **L-2** at 98% relative humidityunder variable temperature (°C).

Temperature / °C	$\sigma/Scm^{\text{-}1}~(\textbf{D-}1)$	$\sigma/Scm^{1}(L1)$	$\sigma/Scm^{1}\left(\textbf{L-2}\right)$
25	9.13E-6	4.39E-6	2.71E-6
30	9.87E-6	5.15E-6	2.88E-6
40	1.09E-5	6.43E-6	3.53E-6
50	1.27E-5	8.36E-6	4.32E-6
60	1.56E-5	1.17E-5	5.01E-6
70	1.83E-5	1.50E-5	7.13E-6
80	2.70E-5	2.20E-5	9.09E-6
90	3.92E-5	3.20E-5	1.30E-5

Fig. S14 Nyquist plots of D-1 at different temperatures under 75% relative humidity

Table S8 The proton conductivity of D-1 at 75% relative humidity under variable

$\sigma / S \; cm^{\text{1}} \;\; (\textbf{D-1})$
7.66E-9
8.73E-9
1.11E-8
1.59E-8
2.81E-8
3.47E-8
5.98E-8
1.05E-7

temperature (°C).