Electronic Supplementary Information (ESI) for Chelation of [¹¹¹In]In³⁺ with the Dual-Size-Selective Macrocycles Py-macrodipa and Py₂-macrodipa

Kevin K. Lee,^{a,e‡} Mou Chakraborty,^{b,c} Aohan Hu,^a Thines Kanagasundaram,^a Daniel L.J. Thorek^{b,c,d} and Justin J. Wilson^{*a,e‡}

- * Corresponding author, e-mail: justinjwilson@ucsb.edu
- ^a Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
- ^b Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA

^c Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA

^d Department of Biomedical Engineering, Washington University, St. Louis, Missouri, 63110, USA

^e Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California, 93106, USA

Table of Contents

Page

Figure S1. ¹ H NMR spectrum of 5	S2
Figure S2. ¹³ C{ ¹ H} NMR spectrum of 5	S3
Figure S3. DART-MS of 5	S3
Figure S4. ¹ H NMR spectrum of 6	S4
Figure S5. ¹³ C{ ¹ H} NMR spectrum of 6	S5
Figure S6. DART-MS of 6	S6
Figure S7. ¹ H NMR spectrum of 4	S6
Figure S8. DART-MS of 4	S7
Figure S9. Spectrophotometric titration data fitting of In-py-macrodipa at 250 nm.	S7
Figure S10. Spectrophotometric titration data fitting of In-py2-macrodipa at 260 nm.	S8
Figure S11. Radio-TLC of [111In][In(py-macrodipa)]+ and [111In]InCl ₃	S9
Figure S12. Radio-TLC of [111In][In(py2-macrodipa)]+ and [111In]InCl3	S9
Figure S13. Radio-TLC of 1 mM macropa with [111In]InCl ₃	S10
Figure S14. Radio-TLC of 4 mM macropa with [111In]InCl ₃	S10
Table S1. Radiochemical conversions for the formation of [111In][In(py-macrodipa)] ⁺ and	S11
[111In][In(py2-macrodipa)] ⁺ at different ligand concentrations	
Table S2. Stability of [111In][In(py-macrodipa)]+ and [111In][In(py2-marodipa)]+ in human serum	S11
at 37 °C	
Figure S15 Radio-HPLC of [111In][In(py-macrodipa)]+ in human serum at 37 °C	S12
Figure S16. Radio-HPLC of [111In][In(py2-macrodipa)]+ in human serum at 37 °C	S13
Figure S17. Human serum stability of [111In][In(macropa)] ⁺ in human serum at 37 °C	S14
Table S3. In vivo biodistribution of [¹¹¹ In]InCl ₃ , [¹¹¹ In][In(macropa)] ⁺ , [¹¹¹ In][In(py-macrodipa)] ⁺ ,	S14
and [111In][In(py2-macrodipa)]+ in mice.	

DFT Calculations Supplementary Data

S17

Figure S1. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of 5.

Figure S2. ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C) spectrum of 5.

Figure S3. DART-MS of 5. Chloroform was used as the solvent.

Figure S4. ¹H NMR (500 MHz, D₂O, 25 °C) spectrum of 6.

Figure S5. ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆, 25 °C) spectrum of **6**.

Figure S6. DART-MS of 6. Water was used as the solvent.

Figure S7. ¹H NMR (500 MHz, CD₃OD, 25 °C) spectrum of 4.

Figure S8. DART-MS of 4. Methanol was used as the solvent.

Figure S9. Representative UV–Vis spectrophotometric titration of In^{3+} -py-macrodipa system. $c_{In} = c_{py-macordipa} = 8 \times 10^{-5}$ M. Data fitting at 250 nm (where the most significant spectral change occurs) and speciation distribution over the titration pH range (0.1 M KCI, 25 °C).

Figure S10. Representative UV–Vis spectrophotometric titration of In^{3+} -py-macrodipa system. $c_{In} = c_{py2-macordipa} = 5 \times 10^{-5}$ M. Data fitting at 260 nm (where the most significant spectral change occurs) and speciation distribution over the titration pH range (0.1 M KCI, 25 °C).

Figure S11. Representative radio-TLC of $[^{111}In][In(py-macrodipa)]^+$ compared to radio-TLC of $[^{111}In]InCl_3$. Radiolabeling was performed with 100 μ M of py-macrodipa at 25 °C for 5 min, iTLC-SG eluted with 50 mM EDTA (pH 5.5).

Figure S12. Representative radio-TLC of $[^{111}In][In(py_2-macrodipa)]^+$ compared to radio-TLC of $[^{111}In]InCl_3$. Radiolabeling was performed with 100 μ M of py_2-macrodipa at 25 °C for 5 min, iTLC-SG eluted with 50 mM EDTA (pH 5.5).

Figure S13. Representative radio-TLC of $[^{111}In][In(macropa)]^+$ compared to radio-TLC of $[^{111}In]InCl_3$. Radiolabeling was performed with 1 mM of macropa at 25 °C for 5 min, iTLC-SG eluted with 50 mM EDTA (pH 5.5).

Figure S14. Representative radio-TLC of $[^{111}In][In(macropa)]^+$ compared to radio-TLC of $[^{111}In][InCl_3]$. Radiolabeling was performed with 4 mM of macropa at 25 °C for 60 min, iTLC-SG eluted with 50 mM EDTA (pH 5.5).

Table S1. Radiochemical Conversions of [¹¹¹In]In³⁺ with Py-macrodipa and Py₂-macrodipa at Different Ligand Concentrations. (pH 5.5 ammonium acetate buffer; 25 °C; 5 min)^a

	RCC (%)				
Ligand Concentration (M)	Py-macrodipa	Py ₂ -macrodipa			
1.0×10 ⁻³	94.5 ± 1.8	94.6 ± 2.6			
1.0×10 ⁻⁴	94.4 ± 2.5	95.4 ± 1.7			
1.0×10 ^{−5}	94.4 ± 2.2	95.5 ± 2.0			
1.0×10 ⁻⁶	93.9 ± 2.1	92.9 ± 2.4			
1.0×10 ⁻⁷	15.2 ± 1.4	25.3 ± 3.8			
1.0×10 ⁻⁸	11.6 ± 0.3	19.0 ± 0.7			

^a Measurements were carried out in triplicate and the error is the standard deviation of these replicates.

Table S2. Stability of $[^{111}In][In(py-macrodipa)^+ and <math>[^{111}In][In(py_2-marodipa)]^+$ in Human Serum at 37 °C^{*a*}

	% Complex Intact					
Time (h)	Py-macrodipa	Py ₂ -macrodipa				
1	98.6 ± 0.2	99.1 ± 0.1				
18	96.7 ± 2.1	97.3 ± 0.6				
30	94.6 ± 3.5	98.2 ± 1.0				
42	96.8 ± 4.6	98.6 ± 0.5				
54	95.9 ± 3.4	97.7 ± 1.4				
66	91.0 ± 7.8	97.1 ± 0.3				
78	95.4 ± 5.9	97.1 ± 1.9				
90	92.0 ± 6.4	92.9 ± 2.2				
102	95.8 ± 1.2	95.4 ± 3.6				
114	96.8 ± 1.0	98.6 ± 1.2				
126	97.3 ± 3.5	94.2 ± 3.3				
138	94.8 ± 4.1	98.4 ± 1.8				

^a Measurements were carried out in triplicate and the error is the standard deviation of these replicates.

Figure S15. Representative radio-HPLC of $[^{111}In][In(py-macrodipa)]^+$ in human serum at 37 °C at each time point. The $[^{111}In][In(py-macrodipa)]^+$ complex was eluted with 0 to 90% B linear gradient 20 min (A: H₂O + 0.1% TFA, B: MeOH).

Figure S16. Representative radio-HPLC of $[^{111}In][In(py_2-macrodipa)]^+$ in human serum at 37 °C at each time point. The $[^{111}In][In(py_2-macrodipa)]^+$ complex was eluted with 0 to 90% B linear gradient 20 min (A: H₂O + 0.1% TFA, B: MeOH).

Figure S17. Human serum stability of [¹¹¹In][In(macropa)]⁺, prepared from a 4 mM solution of macropa, in human serum at 37 °C.

Table S3. In Vivo biodistribution of [¹¹¹In]InCl₃, [¹¹¹In][In(macropa)]⁺, [¹¹¹In][In(py-macrodipa)]⁺, and [¹¹¹In][In(py₂-macrodipa)]⁺. Values for each time point are given as percent injected activity per gram (% IA/g).

[¹¹¹ In]InCl₃									
Organ	0.5h	SD	Ν	2h	SD	Ν	24h	SD	Ν
Blood	11.13107	2.387162	3	10.99167	2.248077	4	1.539148	0.382377	4
Heart	3.560892	1.424547	4	4.265713	1.552329	4	1.605656	0.283035	4
Lungs	7.568539	2.37174	4	8.971456	1.380778	4	2.172134	0.467755	4
Liver	3.948502	1.321652	4	5.339713	0.931532	4	6.374404	1.075833	4
Kidneys	26.30511	7.142211	4	22.21027	1.907116	4	18.81397	3.571606	4
Spleen	1.501223	0.384365	4	2.151759	0.34837	4	2.475891	0.523328	4
Stomach	1.457286	0.239089	4	1.551429	0.304916	4	1.486169	0.432787	4
SI	1.915439	0.537025	4	2.525415	0.24857	4	3.526138	1.28484	4
LI	1.62573	0.337636	4	1.731226	0.093102	4	2.888496	0.95843	4
Skin	1.929875	0.286741	4	3.03683	0.7356	4	3.316639	1.747006	4
Muscle	1.269709	0.175996	4	1.555392	0.328284	4	1.090269	0.130789	4
Fat	0.645009	0.067731	4	0.73238	0.150988	4	1.448041	0.240477	4
Tibia	3.730426	0.805453	4	4.426114	0.983589	4	5.544644	1.344146	4

Calvaria	6.207776	2.774584	4	5.743241	2.183205	4	4.829896	1.645127	4
Brain	0.388945	0.107009	4	0.453189	0.136824	4	0.329639	0.143389	4
	•		[111]	In][In(macı	opa)]+				
Organ	0.5h	SD	Ν	2h	SD	Ν	24h	SD	Ν
Blood	4.782224	2.914834	4	4.094154	0.904548	4	0.878577	0.268915	4
Heart	1.558579	0.829127	4	1.421515	0.630122	4	0.9374	0.253781	4
Lungs	2.763457	1.134809	4	2.990757	0.341958	4	1.431556	0.385342	4
Liver	15.19309	5.041646	4	12.91125	2.031918	4	14.57441	1.334882	4
Kidneys	20.17845	8.143421	4	16.838	1.912519	4	12.78058	1.49039	4
Spleen	3.078484	1.032171	4	2.943872	1.025778	4	4.88973	0.924699	4
Stomach	1.048924	0.684695	4	0.752056	0.214279	4	0.599637	0.114436	4
SI	1.302555	0.523919	4	1.055602	0.269007	4	1.777868	0.612654	4
LI	0.787561	0.278362	4	0.564742	0.126833	4	1.395949	0.183911	4
Skin	2.422796	1.36334	4	1.604344	0.252224	4	1.397086	0.674619	4
Muscle	0.855188	0.453229	4	0.786775	0.111746	4	0.613638	0.275787	4
Fat	0.316589	0.163447	4	0.343115	0.103872	4	0.373918	0.174359	4
Tibia	2.559857	1.258309	4	2.109007	0.549312	4	5.020104	2.332986	4
Calvaria	1.95803	0.768036	4	5.811043	5.047601	4	3.248906	1.590549	4
Brain	0.193591	0.102604	4	0.328824	0.232935	4	0.29827	0.192681	4
	-	[¹¹	¹ In]	[In(py-mac	rodipa)]+	-			
Organ	0.5h	SD	Ν	2h	SD	Ν	24h	SD	Ν
Blood	1.400774	0.723207	4	0.594822	0.106937	4	0.114847	0.008651	4
Heart	0.355246	0.071371	4	0.252819	0.027638	4	0.109244	0.016135	4
Lungs	0.84843	0.135726	4	0.579747	0.118124	4	0.212841	0.032395	4
Liver	1.708602	0.408891	4	1.52174	0.269168	4	1.212741	0.081314	4
Kidneys	4.183916	0.858547	4	2.454069	0.426451	4	1.715354	0.406197	4
Spleen	0.230208	0.042861	4	0.209191	0.029657	4	0.228522	0.025462	4
Stomach	0.219969	0.114095	4	0.240923	0.074726	4	0.204004	0.09544	4
SI	1.608592	0.48418	4	0.474462	0.157343	4	0.325727	0.050428	4
LI	0.22966	0.022873	4	0.389954	0.084001	3	0.655123	0.216229	4
Skin	0.57443	0.310589	4	0.356216	0.148534	4	0.260106	0.085732	4
Muscle	0.209054	0.063685	4	0.153686	0.027049	4	0.089358	0.04378	4
Fat	0.100041	0.045277	4	0.056719	0.016277	4	0.061684	0.038679	4
Tibia	0.342032	0.022672	4	0.236833	0.080962	4	0.326742	0.032326	4
Calvaria	0.88553	0.731249	4	0.258182	0.126479	4	0.194959	0.065245	4
Brain	0.065461	0.016188	4	0.038077	0.002702	4	0.022074	0.002256	4
		[¹¹¹	ln][In(py2-mac	crodipa)]+				
Organ	0.5h	SD	Ν	2h	SD	Ν	24h	SD	Ν

Blood	1.2221	0.25207	4	0.738129	0.093919	4	0.112384	0.040665	4
Heart	0.330945	0.033477	4	0.273234	0.016921	4	0.097447	0.040542	4
Lungs	0.935808	0.138492	4	0.588315	0.047808	4	0.149852	0.061284	4
Liver	2.287751	0.945966	4	1.215243	0.141374	4	1.372107	0.564503	4
Kidneys	4.572923	0.832515	4	2.143948	0.39301	4	1.452306	0.398568	4
Spleen	0.251381	0.05831	4	0.201484	0.014043	4	0.167861	0.051657	4
Stomach	0.396485	0.338435	4	0.238631	0.062347	4	0.10076	0.054667	4
SI	2.657816	1.07697	3	0.529708	0.060434	4	0.206904	0.098133	4
LI	0.238404	0.025538	4	0.604338	0.341423	4	0.434948	0.162334	4
Skin	0.986358	0.289192	4	0.349595	0.092482	4	0.254275	0.103598	4
Muscle	0.233684	0.039382	4	0.120034	0.026868	4	0.087325	0.04271	4
Fat	0.10147	0.038766	4	0.062716	0.023519	4	0.047849	0.024926	4
Tibia	0.441128	0.112989	4	0.27799	0.028405	4	0.372908	0.156774	4
Calvaria	0.455986	0.310202	4	0.449871	0.160244	4	0.247592	0.094029	4
Brain	0.23701	0.368349	4	0.129971	0.184326	4	0.01973	0.006846	4

DFT Calculation Supplementary Data

We herein list all energy outputs of our computations in this work. Their corresponding geometry outputs (.xyz) are included in a compressed file (.zip) as an independent ESI file.

(1) In-py-macrodipa complex, Conformation A

Zero-point correction=	0.619717 (Hartree/Particle)
Thermal correction to Energy=	0.654514
Thermal correction to Enthalpy=	0.655458
Thermal correction to Gibbs Free Ener	gy= 0.556568
Sum of electronic and zero-point Energy	gies= -1925.979569
Sum of electronic and thermal Energie	s= -1925.944771
Sum of electronic and thermal Enthalp	ies= -1925.943827
Sum of electronic and thermal Free En	nergies= -1926.042718

SMD method: E(ωB97XD) = -1926.68381750

(2) In-py-macrodipa complex, Conformation B without H₂O

Zero-point correction=	0.618445 (Hartree/Particle)
Thermal correction to Energy=	0.653934
Thermal correction to Enthalpy=	0.654878
Thermal correction to Gibbs Free Ener	gy= 0.553760
Sum of electronic and zero-point Energy	gies= -1925.965301
Sum of electronic and thermal Energie	s= -1925.929812
Sum of electronic and thermal Enthalp	ies= -1925.928867
Sum of electronic and thermal Free En	ergies= -1926.029985

SMD method: E(ω B97XD) = -1926.68750206

(3) In-py-macrodipa complex, Conformation B with H₂O

Zero-point correction=	0.645745 (Hartree/Particle)
Thermal correction to Energy=	0.682813
Thermal correction to Enthalpy=	0.683758
Thermal correction to Gibbs Free Ener	gy= 0.579899
Sum of electronic and zero-point Energy	gies= -2002.406091
Sum of electronic and thermal Energie	s= -2002.369023
Sum of electronic and thermal Enthalp	ies= -2002.368079
Sum of electronic and thermal Free En	ergies= -2002.471937

SMD method: E(ωB97XD) = -2003.14303801

(4) In-py2-macrodipa complex, Conformation A

Zero-point correction=

0.625731 (Hartree/Particle)

Thermal correction to Energy=0.662191Thermal correction to Enthalpy=0.663135Thermal correction to Gibbs Free Energy=0.558961Sum of electronic and zero-point Energies=-2019.190013Sum of electronic and thermal Energies=-2019.153552Sum of electronic and thermal Enthalpies=-2019.152608Sum of electronic and thermal Free Energies=-2019.256782

SMD method: E(ωB97XD) = -2019.90344501

(4) In-py2-macrodipa complex, Conformation B with H2O

Zero-point correction=	0.653076 (Hartree/Particle)
Thermal correction to Energy=	0.690976
Thermal correction to Enthalpy=	0.691921
Thermal correction to Gibbs Free Ener	rgy= 0.586259
Sum of electronic and zero-point Energy	gies= -2095.625773
Sum of electronic and thermal Energie	es= -2095.587873
Sum of electronic and thermal Enthalp	ies= -2095.586929
Sum of electronic and thermal Free Er	nergies= -2095.692590

SMD method: E(ωB97XD) = -2096.37041781

(5) In-py₂-macrodipa complex, Conformation B without H₂O

Zero-point correction=	0.624846 (Hartree/Particle)
Thermal correction to Energy=	0.661379
Thermal correction to Enthalpy=	0.662324
Thermal correction to Gibbs Free Ener	gy= 0.558857
Sum of electronic and zero-point Energy	gies= -2019.182320
Sum of electronic and thermal Energie	s= –2019.145787
Sum of electronic and thermal Enthalp	ies= -2019.144842
Sum of electronic and thermal Free En	ergies= -2019.248309

SMD method: E(ω B97XD) = -2019.9111516