Supporting Information

Trivial Positional Isomerism in Ligands Triggering Different Properties in Fe(II)-Metallopolymers;

Design, Synthesis, and Characterization

Shubham Bawa, ^a Anil Kumar, ^{a, b} Gaurav Kumar Nim, ^c Jayanta Bera, ^d Samaresh Ghosh, ^a Satyajit Sahu, ^d Prasenjit Kar, ^c Anasuya Bandyopadhyay*, ^a

^aDepartment of Polymer & Process Engineering, IIT Roorkee, Saharanpur Campus, Saharanpur-247001, India

^bDepartment of Food & Nutrition, Kunsan National University, Gunsan-54150, South Korea

^cDepartment of Chemistry, IIT Roorkee, Roorkee-247667, India

^dDepartment of Physics, IIT Jodhpur, Rajasthan-342037, India

Table of Contents	Page No.
1. $^{\rm 13}\text{C-NMR}$ spectrum of Ligand L $_{\rm 1}$ and HRMS of Ligand L $_{\rm 1}$	S3
2. $^{\rm 13}\text{C-NMR}$ spectrum of Ligand L $_{\rm 2}$ and HRMS of Ligand L $_{\rm 2}$	S4
3. ¹ H-NMR spectrum of Ligands, Fe(II)-poly and schematic their coordination	S5
4. Molecular Weight of Fe(II)-L ₁ poly and Thermal analysis	S5
5. Molecular Weight of Fe(II)-L ₂ poly and Thermal analysis	S7
6. Cyclic voltammetry of Ligand L_1 and Ligand L_2	S8
7. Repeatable Cyclic voltammetry of Fe(II)-L ₁ and Fe(II)-L ₂ Poly	S9
8. Conductivity Experiment and Counter-ion detection of Fe(II)-L $_1$ and Fe(II)-L $_2$ poly	S11
9. DRS of Ligand L_1 and Ligand L_2	S12
10. XPS of Fe(II)-L ₁ and Fe(II)-L ₂ poly	S12
11. Spectroelectrochemical studies upon sequential voltage increase of	S14
$Fe(II)-L_1$ poly and $Fe(II)-L_2$ poly	
12. Effect of mass loading and scan rate on capacitance value of Fe(II)-L $_1$ poly	
and $Fe(II)-L_2$ poly	S14

1. $^{\rm 13}\text{C-NMR}$ spectrum of Ligand L1 and HRMS of Ligand L1

Figure .S-1. $^{13}\text{C-NMR}$ spectrum (125 MHz, CDCl3) of Ligand L1

Figure .S-2. HRMS of Ligand L₁

2. $^{\rm 13}\text{C-NMR}$ spectrum of Ligand L2 and HRMS of Ligand L2

Figure .S-3. ¹³C-NMR (125 MHz, CDCl₃) spectrum of Ligand L₂

Figure .S-4. HRMS of Ligand L₂

3. ¹H-NMR spectrum of Ligands, Fe(II)-poly and schematic their coordination

Figure .S-5. ¹H NMR spectra of a) Ligand L_1 b) Fe(II)- L_1 poly c) Ligand L_2 and d) Fe(II)- L_2 poly and schematic coordination of e) Fe(II)- L_1 poly f) Fe(II)- L_2 poly

4. Molecular Weight of Fe(II)-L₁ poly and Thermal analysis

Molecular Weight determination:

The Static light scattering (SLS) technique was used to determine the Weight Average molecular weight of the Fe(II)-L₁ poly and Fe(II)-L₂ poly. For both polymers, two different stock solutions were prepared by dissolving 15 mg of polymer in 30 ml of THF that were then filtered through a 0.2-micron Nylon filter to remove solid particles to obtain a homogeneous solution. Then six different concentration solutions were prepared from this stock solution with filtered THF solvent used as dilution. Both the polymers were analyzed at different angles by SLS technique gives the $(3.7 \pm 0.8) \times 10^4$ g/ mol for Fe(II)- L₁ poly (Fig-S-6) and $(4.04 \pm 0.8) \times 10^4$ g/ mol for Fe(II)- L₂ Poly (Fig-S-8) shown in Berry plot.

Figure .S-6. Berry Plot of Fe (II)-L₁ poly in batch mode (THF solution)

Thermal analysis

Figure .S-7. DSC Thermogram of Fe(II)-L₁ poly

5. Molecular Weight of Fe(II)–L₂ poly and Thermal analysis

Thermal Analysis:

Figure .S-9. DSC Thermogram of Fe(II)-L₂ poly

6. Cyclic voltammetry of Ligand L1 and Ligand L2

Figure .S-10. Cyclic Voltammogram of Ligand L₁ in dichloromethane containing 0.1 M TBAP at 100mV/s with Glassy Carbon working electrode and Ag/AgCl reference electrode

The Cyclic voltammogram of the ligand L_1 is shown in Figure .S-10. Ligands do not generally show any oxidation response. A reduction peak at -0.85 V was observed, corresponding to the reduction of the imine bond.

Figure .S-11. Cyclic Voltammogram of ligand L₂ in dichloromethane containing 0.1 M TBAP at 100mV/s with Glassy Carbon working electrode and Ag/AgCl reference electrode

Similarly, the cyclic voltammogram of the Ligand L_2 is shown in Figure .S-11. A reduction response at - 0.80 V was observed, corresponding to the reduction of imine bonds.

7. Repeatable Cyclic voltammetry of Fe(II)-L₁ and Fe(II)-L₂ Poly

Figure .S-13. 10 segment oxidation Cyclic Voltammogram of Fe(II)-L₁ poly

Figure .S-14. 10 segment reduction Cyclic Voltammogram of $Fe(II)-L_2$ poly

Figure .S-15. 10 segment oxidation Cyclic Voltammogram of Fe(II)-L₂ poly

8. Conductivity Experiment and Counter ion detection of Fe(II)-L₁ poly and Fe(II)-L₂ poly solutions

Figure .S-16. Counter ion detection of $Fe(II)-L_1$ poly and $Fe(II)-L_2$ poly solutions

Two experiments were conducted to verify the presence of Cl⁻ counter anion; precipitation test by AgNO₃ followed by conductivity measurement experiment. A ubiquitous test used to detect Cl⁻ ions in solution is the AgNO₃ test. On adding AgNO3 solution to Fe(II)-L₁ Poly solution, no turbidity was observed, which indicates the absence of Cl- as counter anion indicating Fe(II)-L₁ poly as a neutral polymer; however, in the case of Fe(II)-L₂ poly, slight turbidity was observed (as shown in pic) on the addition of AgNO₃ which indicates the presence of Cl⁻ as a counter anion. This test was also supported by conductivity measurement of different concentrations for both polymeric solutions (Table S-1 below). In the case of Fe(II)-L₁ poly, a minimal change in conductivity change with change in concentration was high, which could only be possible because of counter Cl⁻ anions. Secondly, for the same concentration of polymeric solutions conductivity difference was quite large, indicating the presence of Cl- counter anion for Fe(II)-L₂ poly.

Sr. No.	Concentration	Conductivity (µS) Fe(II)-L ₁ Poly	Conductivity (μS) Fe(II)-L ₂ Poly
1	1 x 10 ⁻⁴ M	6.34	14.13
2	2 x 10 ⁻⁴ M	7.35	17.07
3	3 x 10 ⁻⁴ M	7.15	34.40
4	4 x 10 ⁻⁴ M	7.77	43.42

Table .S-1. Conductivity measurements of Fe(II)	-L ₁ and Fe(II)-L ₂ Poly
---	--

9. DRS of Fe(II)-L₁ and Fe(II)-L₂ poly

Figure .S-17. DRS of Fe(II)-L₁ poly and Fe(II)-L₂ poly

Figure .S-19. XPS of Fe(II)- L_2 poly of a) Carbon b) Nitrogen c) Oxygen d) Iron and e) Chlorine element

11. Spectroelectrochemical studies upon sequential voltage increase of Fe(II)-L₁ poly and Fe(II)-L₂ poly

Figure .S-20. Spectroelectrochemical experiment studies upon sequential voltage increase (a) Fe(II)-L₁ poly showing incremental changes in spectra in between 0 V to 0.9 V and (b) Fe(II)-L₂ poly showing a decrease in spectra in between 0 V to 0.9 V

Figure .S-21. Effect of mass loading and scan rate on capacitance value of Fe(II)-L₁ poly and Fe(II)-L₂ poly