Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting Information

for

Nickel(II) Complexes with 14-membered bis-Thiosemicarbazide and bis-Isothiosemicarbazide Ligands: Synthesis, Characterization and Catalysis of Oxygen Evolution Reaction

Iuliana Besleaga,^{*a*} Anastasia A. Fesenko,^{*b*} Anup Paul,^{*c*} Biljana Šljukić,^{*d*} Peter Rapta,^{*e*,*} Armando J. L. Pombeiro,^{*c*,*} Anatoly D. Shutalev,^{*f*,*} Vladimir B. Arion ^{*a*,*g*,*}

^aUniversity of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria

^bA. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Ave., 119071 Moscow, Russian Federation

^cCentro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

^dCenter of Physics and Engineering of Advanced Materials, Laboratory of Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal

^eInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic ^fN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation

^{*g*}*Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania*

Table of contents

1. Characterization of H_2L^S and H_2L^{SEt}	
1.1. NMR spectra of the ligands	
1.2. ESI-MS of the ligands	
1.3. IR spectra of the ligands	
2. Characterization of Ni(II) complexes	
3. Crystallographic data	

1. Characterization of H_2L^S and H_2L^{SEt}

1.1. NMR spectra of the ligands

Figure S1. ¹H NMR spectrum of the starting material (mixture of 3 and 2) (300.13 MHz, DMSO-*d*₆)

Figure S2. ¹H NMR spectrum of crude **6** prepared by the treatment of the mixture of **3** and **2** with NH₂OH·HCl (1.25 equiv) (EtOH, reflux, 2 h) (600.13 MHz, DMSO-*d*₆)

Figure S3A. ¹H NMR spectrum of (5*R**,6*R**,12*R**,13*R**)-6 (600.13 MHz, DMSO-*d*₆)

Figure S3B. ¹³C NMR spectrum of (5*R**,6*R**,12*R**,13*R**)-6 (150.90 MHz, DMSO-*d*₆)

Figure S3C. ¹H, ¹H COSY spectrum of (5*R**,6*R**,12*R**,13*R**)-6 (150.90 MHz, DMSO-*d*₆)

Figure S3D. ¹H,¹³C HSQC spectrum of (5*R**,6*R**,12*R**,13*R**)-6 (Bruker Avance III, DMSO-*d*₆)

Figure S3E. ¹H,¹³C HMBC spectrum of (5*R**,6*R**,12*R**,13*R**)-6 (Bruker Avance III, DMSO-*d*₆)

Figure S3F. Fragment of ¹H,¹³C HMBC spectrum of (5*R**,6*R**,12*R**,13*R**)-6 (Bruker Avance III, DMSO-*d*₆)

Figure S3G. Fragment of ¹H,¹³C HMBC spectrum of (5*R**,6*R**,12*R**,13*R**)-6 (Bruker Avance III, DMSO-*d*₆)

Figure S3H. ¹H, ¹H NOESY spectrum of (5*R**,6*R**,12*R**,13*R**)-6 (600.13 MHz, DMSO-*d*₆)

Figure S4A. ¹H NMR spectrum of (5*R**,6*R**,12*R**,13*R**)-**8** (600.13 MHz, DMSO-*d*₆)

Figure S4B. ¹H NMR spectrum of (5*R**,6*R**,12*R**,13*R**)-8 (600.13 MHz, CDCl₃).

Figure S4C. ¹³C NMR spectrum of (5*R**,6*R**,12*R**,13*R**)**-8** (150.90 MHz, DMSO-*d*₆).

Figure S4D. ¹³C NMR spectrum of (5*R**,6*R**,12*R**,13*R**)-8 (150.90 MHz, CDCl₃).

Figure S4E. ¹H, ¹H COSY spectrum of (5*R**,6*R**,12*R**,13*R**)-8 (150.90 MHz, CDCl₃).

Figure S4F. Fragment of ¹H, ¹H COSY spectrum of (5*R**,6*R**,12*R**,13*R**)-8 (150.90 MHz, CDCl₃).

Figure S4G. ¹H,¹³C HSQC spectrum of (5*R**,6*R**,12*R**,13*R**)-8 (Bruker Avance III, CDCl₃).

Figure S4H. ¹H,¹³C HMBC spectrum of (5*R**,6*R**,12*R**,13*R**)-8 (Bruker Avance III, CDCl₃).

Figure S4I. Fragment of ¹H, ¹³C HMBC spectrum of $(5R^*, 6R^*, 12R^*, 13R^*)$ -8 (Bruker Avance III, CDCl₃).

Figure S4J. Fragment of ¹H, ¹³C HMBC spectrum of $(5R^*, 6R^*, 12R^*, 13R^*)$ -8 (Bruker Avance III, CDCl₃).

Figure S4K. ¹H, ¹H NOESY spectrum of (5*R**,6*R**,12*R**,13*R**)-8 (600.13 MHz, CDCl₃).

Figure S4L. Fragment of ¹H, ¹H NOESY spectrum of (5*R**,6*R**,12*R**,13*R**)-8 (600.13 MHz, CDCl₃).

Figure S4M. Fragment of ¹H, ¹H NOESY spectrum of (5*R**,6*R**,12*R**,13*R**)-8 (600.13 MHz, CDCl₃).

1.2. ESI-MS of the ligands

Figure S5. Positive ion ESI-MS for H₂L^S.

Figure S6. Negative ion ESI-MS for H₂L^S.

Figure S7. Positive ion ESI-MS for H_2L^{SEt} .

1.3. IR spectra of the ligands

Figure S8. IR spectrum of (5*R**,6*R**,12*R**,13*R**)-6 (KBr).

Figure S9. IR spectrum of (5*R**,6*R**,12*R**,13*R**)-8 (KBr).

2. Characterization of Ni(II) complexes

Scheme S1. The atom numbering for the assignment of resonances of Ni(II) complexes.

Figure S10. Positive ion ESI-MS for Ni^{II}L^S.

Figure S11. Negative ion ESI-MS for Ni^{II}L^S.

Figure S13. ¹³C NMR spectra for Ni^{II}L^S.

Figure S14. IR spectra for Ni^{II}L^S.

Figure S15. UV–vis absorption spectrum for Ni^{II}L^S in methanol.

Figure S16. Positive ion ESI-MS for Ni^{II}L^{SMe}.

Figure S17. Negative ion ESI-MS for Ni^{II}L^{SMe}.

Figure S18. ¹H NMR spectra for Ni^{II}L^{SMe}.

Figure S19. ¹³C NMR spectrum for Ni^{II}L^{SMe}.

Figure S20. IR spectra for Ni^{II}L^{SMe}.

Figure S21. UV–vis absorption spectrum of $Ni^{II}L^{SMe}$ in methanol.

Figure S22. Positive ion ESI-MS for Ni^{II}L^{SEt}.

Figure S23. Negative ion ESI-MS for Ni^{II}L^{SEt}.

Figure S24. ¹H NMR spectrum for Ni^{II}L^{SEt}.

Figure S25. ¹³C NMR spectra for Ni^{II}L^{SEt}.

Figure S26. IR spectrum of Ni^{II}L^{SEt}.

Figure S27. UV–vis absorption spectrum of $Ni^{II}L^{SEt}$.

3. Crystallographic data

Atom	NiN1N2C3N4	NiN8N9C10N11
N2/N9	-0.393(5)	-0.387(5)
C3/C10	-0.237(5)	-0.302(4)
Conformation	envelope	envelope

Table S1. Deviation of atoms in 5-membered rings from respective NiN_2 planes in $Ni^{II}L^{S}$.

	Table S2. Deviation	n of atoms in	6-membered	rings from	respective N	iN ₂ planes in Ni^{II}L^S .
--	---------------------	---------------	------------	------------	--------------	---

Atom	NiN4C5C6C7N8	NiN11C12C13C14N1
C5/C12	0.636(5)	0.393(5)
C6/C13	0.270(6)	0.874(5)
C7/C14	-0.145(5)	0.193(5)
C15/C16	2.155(5)	1.529(6)
Conformation	А	В

compound	H_2L^S	H_2L^{SEt}	NiL ^S	NiL ^{SMe}	NiL ^{SEt}
empirical formula	$C_{16}H_{26}N_6S_2$	$C_{20}H_{34}N_6S_2$	$C_{16}H_{24}N_6NiS_2$	$C_{18}H_{28}N_6NiS_2$	$C_{20}H_{32}N_6NiS_2$
fw	366.55	422.65	423.24	451.29	479.34
space group	Pbca	<i>P</i> -1	Cc	$P2_{1}/c$	<i>P</i> -1
<i>a</i> , Å	17.0619(9)	9.2324(7)	17.4292(5)	11.5410(2)	11.6032(10)
b, Å	9.7583(3)	10.4294(7)	6.6235(3)	13.7657(2)	13.6885(12)
<i>c</i> , Å	21.8947(7)	12.5483(8)	16.2981(5)	13.0159(2)	16.1127(13)
α , °		101.269(5)			112.018(3)
β , °		103.562(6)	100.416(2)	103.9050(10)	90.826(3)
γ, °		93.900(6)			107.495(3)
V[Å ³]	3645.4(3)	1143.68(14)	1850.48(11)	2007.24(6)	2239.3(3)
Ζ	8	2	4	4	2
λ [Å]	0.71073	1.54186	0.71073	0.71073	0.71073
$\rho_{\rm calcd}, {\rm g} {\rm cm}^{-3}$	1.336	1.227	1.519	1.493	1.422
cryst size, mm ³	0.10 imes 0.08 imes 0.03	$0.13 \times 0.11 \times 0.11$	$0.24 \times 0.15 \times 0.07$	$0.31 \times 0.18 \times 0.14$	$0.25 \times 0.10 \times 0.05$
<i>T</i> [K]	100(2)	300(2)	100(2)	100(2)	200(2)
μ , mm ⁻¹	0.303	2.238	1.286	1.191	1.072
R_1^a	0.0282	0.0488	0.0292	0.0254	0.0362
wR_2^b	0.0739	0.1456	0.0679	0.0639	0.0869
GOF ^c	1.038	1.056	1.089	1.021	1.010
CCDC no.	2324332	2324333	2324334	2324335	2324336

Table S3. Crystal Data and Details of Data Collection and Refinement for H₂L^S, H₂L^{SEt}, NiL^S, NiL^{SMe} and NiL^{SEt}.

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^b $wR_2 = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{1/2}$. ^c GOF = $\{\Sigma [w(F_o^2 - F_c^2)^2] / (n-p) \}^{1/2}$, where n is the number of reflections and p is the total number of parameters refined.

Figure S28. Formation of dimeric associates in the crystal of $Ni^{II}L^{S}$ via two intermolecular hydrogen bonding interactions of the thiolactam group of the type N9–H…S1ⁱ and N2ⁱ–H…S2. Symmetry code: (i) x - 0.5, y - 0.5, +z.