Supplementary information

Enhancement of carbamazepine photodegradation using hybrid of phosphorescent carbon dots coupled with highly porous TiO₂ photocatalyst

Daniela Kujawa ^a, Anna Grzegórska ^b, Anna Zielińska-Jurek ^b, Marzena Fandzloch ^a, Oleksii Bezkrovnyi ^a, Paweł Głuchowski ^a

- ^a Institute of Low Temperature and Structural Research, Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
 - ^b Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk, 80-233, Poland

Figure S1. The emission spectrum of the Xe lamp

Table S1. The parameters of the HPLC analysis

Parameter	Value
Wavelength	285 nm
Retention time	4.6 min
Temperature	45 ºC
Flow rate	1.5 cm ³ ·min ⁻¹
Mobile phase composition	39.5% acetonitrile, 60% water, and 0.5% orthophosphoric acid

Fig. S2. The image of TiO2(1), PhCDs and their hybrid compound.

Fis. S3. Normalized absorption spectra of PhCDs@TiO2(1), PhCDs and TiO2(1) compounds

Fig. S4. Absorption spectra of CDs, PhCDs, TiO₂(1), TiO₂(2) and their hybrid compounds.

Fig. S5. Normalized emission spectra of CDs TiO₂ and hybrid materials under excitation wavelength: a)320 nm, b) 370 nm, c) 390 nm, d) 450 nm

Fig. S6. Emission spectra of TiO₂(1) and hybrid materials under excitation wavelength a), 320nm, b) 350 nm, c) 370 nm, d) 390 nm, e) 420 nm, f) 450 nm.

Fig. S7. Emission spectra of TiO₂(2) and hybrid materials under excitation wavelength a), 320nm, b) 350 nm, c) 370 nm, d) 390 nm, e) 420 nm, f) 450 nm.

Fig. S8. Scheme of emission mechanism in $TiO_2(2)$, PhCDs, CDs and hybrid materials.