Supporting Information For:

An Imidazole Functionalized Aqua-Stable Metal-Organic Framework for Selective Fluorogenic Detection of Herbicide DNOC and Antibacterial Agent Furaltadone in Various Biological and Environmental Specimens

Subhrajyoti Ghosh, ϵ Sk Sakir Hossain, ϵ and Shyam Biswas*

Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.

[€]Equal contribution

*Corresponding author. Tel: 91-3612583309

E-mail address: sbiswas@iitg.ac.in

Materials and Characterization Methods:

All of the chemicals were purchased from commercial suppliers and used directly. The 2-(2-((1H-imidazol-2-yl)methylene)hydrazinyl)terephthalic acid linker (H₂L) was prepared according to the below mentioned procedure. The Attenuated Total Reflectance Infrared (ATR-IR) spectra were recorded using PerkinElmer UATR Two at the ambient condition in the region 400-4000 cm^{-1} . The notations used for characterization of the bands are broad (br), strong (s), very strong (vs), medium (m), weak (w) and shoulder (sh). Fluorescence sensing studies were performed with a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer. A Bruker Avance III 600 NMR spectrometer was used for recording ¹H and ¹³C NMR spectra at 125 MHz. Thermogravimetric analysis (TGA) was carried out with a Netzsch STA-409CD thermal analyzer in the temperature range of 30-700 °C in an O₂ atmosphere at the heating rate of 4 °C min⁻¹. PXRD data were collected by using Rigaku Smartlab X-ray diffractometer with Cu-Ka radiation, 40 kV of operating voltage and 125 mA of operating current. N₂ sorption isotherms were recorded by using Quantachrome Quadrasorb evo volumetric gas adsorption equipment at -196 °C. Before the sorption analysis, the degassing of the compound was carried out at 100 °C under a high vacuum for 24 h. Gemini 500 was utilized for Energy Dispersive X-rays spectrometer (EDX) for elemental characterization. FE-SEM images were captured with a Zeiss (SIGMA 300) scanning electron microscope. Pawley refinement was carried out using Materials Studio software.¹

Preparation MOF (1') Suspension for Fluorescence Experiments:

We chose water as a sensing medium for the fluorometric detection of DNOC and furaltadone with the thermally activated MOF (1'). For the sensing of targeted analytes, 4 mg of 1' was suspended in 4 mL of distilled water. Subsequently, the prepared suspension was left undisturbed at room temperature overnight to ensure its stability. For the fluorescence experiment, 300 μ L of the aforementioned stable suspension was carefully transferred into a quartz container, containing 3 mL of distilled water. Fluorescence measurements were then conducted across the wavelength range of 430-650 nm, with excitation wavelength of 361 nm.

Fluorometric Detection of Furaltadone in Blood Serum Sample:

A 10 mL of blood sample was collected and centrifuged at 10,000 rpm for 15 min to obtain blood plasma. The light-yellow blood serum was collected by centrifugation and stored in a Falcon tube at -20 °C. To conduct fluorescence detection experiments, varying concentrations of furaltadone were added to different aliquots of the blood serum sample containing a MOF suspended in HEPES buffer (pH = 7.4).

Fluorometric Detection of Furaltadone in Urine Sample:

A 10 mL urine sample was collected from a healthy individual. Thereafter, the sample was centrifuged at 8000 rpm for 10 min, and the supernatant was used for the experiments. To conduct fluorescence experiments, various amounts of furaltadone were added to the urine samples containing a HEPES buffer suspension of the probe.

Quantum Yield Measurement:

Here, we have utilised the Parker-Rees method to calculate the quantum yield of the prepared MOF, using a 0.5 M H_2SO_4 solution of quinine sulphate as a standard reference.² The formula for this calculation is provided as follows:

 $\Phi_{s} = (\mathbf{A}_{r} \mathbf{F}_{s} \mathbf{n}_{s}^{2} / \mathbf{A}_{s} \mathbf{F}_{r} \mathbf{n}_{r}^{2}) \Phi_{r} \qquad (Equation-1)$

In this equation, Φ_r represents the quantum yield of the quinine sulphate reference solution, while Φ_s represents the quantum yield of the sample. The values of A_r and A_s correspond to the absorbance of the reference and sample, respectively, whereas F_r and F_s refer to the integrated area of fluorescence intensity for the reference and sample, respectively. The refractive indices of the reference and sample are represented by n_r and n_s , respectively. Table S1 contains the relevant photophysical parameters and quantum yield values.

Sl. No.	Sample Name	Excitation Wavelength	Absorbance (A)	Area of Integrated	Quantum Vield (Φ)
1100		λ_{ex} (nm)	(12)	Fluorescence	11010 (1)
				Intensity (F)	
1	Quinine	344	0.097	3.88E7	0.546
	Sulphate				
2	1'	361	0.072	5.78E6	0.107
3	1' after treatment	361	0.076	2.64E6	0.049
	with DNOC				
4	1' after treatment	361	0.074	2.10E6	0.038
	with FLT				

Table S1. Quantum yield of quinine sulphate, 1', and analyte treated 1'.

Synthetic Procedure for 2-(2-((1H-Imidazol-2-yl)Methylene)Hydrazinyl)Terephthalic Acid (H₂L) Linker:

The linker was synthesized in two steps. In first step, we have synthesized the 2-hydrazineylterephthalic acid by following the reported literature.³ In second step, 196 mg of 2-hydrazineylterephthalic acid (1 mmol) and 96 mg (1 mmol) of imidazole 2-carboxaldehyde were dissolved in 10 mL of anhydrous MeOH. After that, the reaction mixture was refluxed for 24 h under N₂ atmosphere. After the completion of the reaction the reaction mixture was allowed to cool down to room temperature. The solvent was removed through evaporation under reduced pressure. Finally, the obtained yellow colored product was dried in a hot air oven at 80 °C. Yield: 750 mg (2.38 mmol, 91%). ¹H NMR (500 MHz, DMSO-d₆): $\delta = 11.60$ (s, 1H), 8.31 (s, 1H), 8.15 (s, 1H), 7.96-7.94 (d, 1H), 7.34-7.32 (d, 1H), 7.19 (d, 2H) ppm. ¹³C NMR (125 MHz, DMSO-d₆): $\delta = 169.22$, 167.77, 167.31, 167.16, 146.44, 143.09, 141.56, 135.74, 131.58, 123.77, 118.25, 114.44 ppm. HR-MS (m/z): 275.0778 for (M+H)⁺ ion (M = 274.0702, mass of H₂L linker). In Figures S1-S3, the NMR and mass spectra of the H₂L linker are shown.

Scheme S1. Reaction scheme for the synthesis of H₂L linker.

Figure S1. ¹H NMR spectrum (500 MHz, DMSO-d₆) of H₂L linker.

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 f1 (ppm)

Figure S2. ¹³C NMR spectrum (125 MHz, DMSO-d₆) of H₂L linker.

Figure S3. ESI-MS spectrum of H_2L linker measured in methanol. The spectrum shows m/z peak at 275.0778, which corresponds to $(M+H)^+$ ion (M = mass of 2-(2-((1H-imidazol-2-yl)methylene)hydrazinyl)terephthalic acid linker).

Figure S4. FE-SEM image of 1.

Figure S5. FE-TEM image of 1.

Figure S6. Particle size distribution plot for 1' (particle sizes were obtained from obtained the TEM images).

Figure S7. EDX spectrum of 1.

Figure S8. EDX elemental mapping of expected elements present in 1.

Figure S9. ATR-IR spectra of H₂L linker, 1 and 1'.

Figure S10. ¹H NMR spectrum of digested **1'** (digested using 40 μ L of 40% HF in 500 μ L of DMSO-d₆).

Compound Name	$[Zr_6O_4(OH)_4(C_{12}H_8N_4O_4)_6]$ ·1.7DMF·6.2H ₂ O (1)	UiO-66
	(this work)	(reported) ⁴
Crystal System	Cubic	Cubic
a = b = c (Å)	20.783 (4)	20.7004(2)
$\alpha = \beta = \gamma (^{\circ})$	90	90
V (Å3)	8976.2 (28)	8870.3(2)

 Table S2. Indexing parameters of UiO-66 and synthesized 1.

Figure S11. TGA curves of **1** and **1'** recorded under O_2 atmosphere in the temperature range of 30-700 °C with a heating rate of 4 °C/min.

Figure S12. PXRD patterns of 1' and the obtained samples of 1' after stirring in different media.

Figure S13. Calculation of missing ligand defects from the TG curve of activated 1'. The vertical dashed line pinpoints $T_{Plat.}$, the temperature at which the plateau ($W_{Exp. Plat.}$) is reached. The horizontal dashed lines pinpoint the relevant TGA plateaus.

Calculation of Linker Defects for 1' from TGA Data:

2-(2-((1H-imidazol-2-yl)methylene)hydrazineyl)terephthalic acid

Formula of MOF = $[Zr_6(O)_4(OH)_4(C_{12}H_8N_4O_4)_6]$

Molecular weight = 2312.7 g/mol

- The dehydroxylated and modulator free formula of MOF is $[Zr_6(O)_6(C_{12}H_8N_4O_4)_6]$ (ideal),
- ✤ Molecular Weight = 2276.6 g/mol
- The dehydroxylated and modulator free formula of MOF is $[Zr_6(O)_{6+x}(C_{10}H_{20}BrNO_6)_{6-x}]$ (experimental), Molecular Weight = 2276.6 g/mol (x = number of linker defect).
- ✤ From TGA data, after final weight loss step, the remaining mass is due to 6 moles of ZrO₂ i.e. $6 \times 123.2 = 739.3$ g/mol.
- The ideal weight of $[Zr_6(O)_6(C_{12}H_8N_4O_4)_6]$ is 3.08 times of 6 moles of ZrO_2 .
- ✤ The remaining flat mass obtained at the last mass on TGA curve was normalized to 100%.
- The ideal normalized mass percentage for $[Zr_6(O)_6(C_{10}H_{20}BrNO_6)_6]$ is 308 %.
- ★ The experimental normalized mass percentage of $[Zr_6(O)_{6+x}(C_{10}H_{20}BrNO_6)_{6-x}]$ from TGA is 233.06%.
- $x = 6 (W_{wt. Plat} W_{end}/Wt.PL._{Theo}).$

where

- $W_{wt. Plat}$ is the (normalized) weight of the sample at the second TGA plateau.
- ✤ W_{end} is 100 %
- $Wt.PL._{Theo} = (W_{wt. ideal Plat.} W_{end})/NL_{ideal}$
- $NL_{ideal} =$ number of linkers per unit formula ideally (6)
- Wt.PL._{Theo} = ((308-100)/6) = 34.7 %
- ★ x = 6 ((233.06 100)/34.7) = 6 3.84 = 2.16
- ✤ Number of linker defect per unit formula is 2.

Figure S14. ¹⁹F NMR spectrum of digested 1' in DMSO-d6 with 40% HF.

Figure S15. N_2 sorption isotherms of 1' measured at -196 °C and density functional theory pore-size distribution of compound 1' (shown in inset).

Figure S16. Fluorescence emission spectra of 1' in different solvent media (H₂O, MeOH, acetonitrile and DMF).

Figure S17. Fluorescence excitation and emission spectra of 1' in water.

Figure S18. Fluorescence kinetic experiment for DNOC sensing.

Figure S19. Fluorometric turn-off response of 1' towards DNOC (100 μ L, 5 mM) in the presence of Na⁺ (100 μ L, 5 mM).

Figure S20. Fluorometric turn-off response of **1'** towards DNOC (100 μ L, 5 mM) in the presence of NO₃⁻ (100 μ L, 5 mM).

Figure S21. Fluorometric turn-off response of 1' towards DNOC (100 μ L, 5 mM) in the presence of Li⁺ (100 μ L, 5 mM).

Figure S22. Fluorometric turn-off response of 1' towards DNOC (100 μ L, 5 mM) in the presence of K⁺ (100 μ L, 5 mM).

Figure S23. Fluorometric turn-off response of 1' towards DNOC (100 μ L, 5 mM) in the presence of Cl⁻ (100 μ L, 5 mM).

Figure S24. Fluorometric turn-off response of 1' towards DNOC (100 μ L, 5 mM) in the presence of atrazine (ATN) (100 μ L, 5 mM).

Figure S25. Fluorometric turn-off response of **1'** towards DNOC (100 μ L, 5 mM) in the presence of clothianidin (CTD) (100 μ L, 5 mM).

Figure S26. Fluorometric turn-off response of **1'** towards DNOC (100 μ L, 5 mM) in the presence of flonicamid (FCD) (100 μ L, 5 mM).

Figure S27. Fluorometric turn-off response of **1'** towards DNOC (100 μ L, 5 mM) in the presence of fomesafen, (FSN) (100 μ L, 5 mM).

Figure S28. Fluorometric turn-off response of 1' towards DNOC (100 μ L, 5 mM) in the presence of imidacloprid (IMD) (100 μ L, 5 mM).

Figure S29. Fluorometric turn-off response of 1' towards DNOC (100 μ L, 5 mM) in the presence of oryzalin (ORZ) (100 μ L, 5 mM).

Figure S30. Fluorometric turn-off response of 1' towards DNOC (100 μ L, 5 mM) in the presence of oxyfluorfen (OXF) (100 μ L, 5 mM).

Figure S31. Fluorometric turn-off response of **1'** towards DNOC (100 μ L, 5 mM) in the presence of paraquat, (PQT) (100 μ L, 5 mM).

Figure S32. 3-D Stern-Volmer plots for DNOC sensing.

Table	S3.	Evaluation	of	intra-day,	inter-day	accuracy	and	precision	study	of	change	in
fluores	cenc	e intensity o	of 1	' after incre	emental ad	ldition of 5	6 mM	aqueous s	solution	n of	DNOC.	

Type of	Amount				Average	SD	Error	RSD
Precision	of DNOC	1	Fluorescenc	e	PL			(%)
	Added		Intensity		Intensity			
	(µL)				(cps)			
Intra	0	125829.0	125634.8	125021.1	125495.0	421.7	-0.003	-0.3
Day	25	21805.2	21800.5	21711.1	21772.2	53.0	-0.002	-0.2
	50	18755.6	18522.3	18305.5	18527.8	225.1	-0.012	-1.2
	75	18205.1	18407.1	18284.7	18298.9	101.7	0.005	0.5
	100	18628.1	18557.4	18071.7	18419.1	302.9	-0.011	-1.1
Inter	0	125021.1	125085.2	124843.9	124983.4	125.0	0.000	0.0
Day	25	21711.1	21474.1	21395.9	21527.0	164.1	-0.008	-0.8
	50	18305.5	18159.2	18037.1	18167.3	134.4	-0.008	-0.8
	75	18284.7	18012.6	17836.2	18044.5	225.9	-0.013	-1.3
	100	18071.7	18200.9	17865.5	18046.0	169.2	-0.001	-0.1
	1			1	1			

Figure S33. Change in the fluorescence intensity of **1**' in water as a function of concentration of DNOC (black colour error bars signify the standard deviations of three individual measurements).

Figure S34. Stern-Volmer plot for the fluorescence quenching of **1**' in presence of DNOC in aqueous medium (black colour error bars signify the standard deviations of three individual measurements).

Table S4. Fluorescence lifetimes of 1'	before and after	the addition of D	NOC solution ($\lambda_{ex} =$
375 nm, pulsed diode laser).			

Volume of DNOC Solution Added (µL)	α_1	$\tau_1(ns)$	$<\tau>*$ (ns)	χ²
0	1	12.5	15.20	1.12
100	1	6.1	6.1	0.97

 $<\tau>* = \alpha_1 \tau_1$

Figure S36. Detection of DNOC in different fruits and vegetables extracts using probe 1'.

Figure S37. Fluorescence kinetic experiment for furaltadone (FLT) sensing.

Figure S38. Fluorometric turn-off response of **1'** towards furaltadone (FLT) (300 μ L, 5 mM) in the presence of Cl⁻ (300 μ L, 5 mM).

Figure S39. Fluorometric turn-off response of **1'** towards furaltadone (FLT) (300 μ L, 5 mM) in the presence of alanine (Ala) (300 μ L, 5 mM).

Figure S40. Fluorometric turn-off response of **1'** towards furaltadone (FLT) (300 μ L, 5 mM) in the presence of Fe²⁺ (300 μ L, 5 mM).

Figure S41. Fluorometric turn-off response of **1'** towards furaltadone (FLT) (300 μ L, 5 mM) in the presence of K⁺ (300 μ L, 5 mM).

Figure S42. Fluorometric turn-off response of 1' towards furaltadone (FLT) (300 μ L, 5 mM) in the presence of Li⁺ (300 μ L, 5 mM).

Figure S43. Fluorometric turn-off response of **1'** towards furaltadone (FLT) (300 μ L, 5 mM) in the presence of methionine (Met) (300 μ L, 5 mM).

Figure S44. Fluorometric turn-off response of **1'** towards furaltadone (FLT) (300 μ L, 5 mM) in the presence of Mg²⁺ (300 μ L, 5 mM).

Figure S45. Fluorometric turn-off response of **1'** towards furaltadone (FLT) (300 μ L, 5 mM) in the presence of Na⁺ (300 μ L, 5 mM).

Figure S46. Fluorometric turn-off response of **1'** towards furaltadone (FLT) (300 μ L, 5 mM) in the presence of NH₄⁺ (300 μ L, 5 mM).

Figure S47. Fluorometric turn-off response of **1'** towards furaltadone (FLT) (300 μ L, 5 mM) in the presence of NO₃⁻ (300 μ L, 5 mM).

Figure S48. Fluorometric turn-off response of **1'** towards furaltadone (FLT) (300 μ L, 5 mM) in the presence of proline (Pro) (300 μ L, 5 mM).

Figure S49. Change in the fluorescence intensity of **1**' in water as a function of concentration of furaltadone (FLT) (blue colour error bars signify the standard deviations of three individual measurements).

Figure S50. Stern-Volmer plot for the fluorescence quenching of 1' in presence of furaltadone (FLT) in aqueous medium.

Figure S51. 3-D Stern-Volmer plots for furaltadone (FLT) sensing.

Figure S52. Reusability of the probe 1' for furaltadone (FLT) sensing in aqueous medium.

Table S5. Fluorescence lifetimes of 1' before and after the addition of furaltadone (FLT) solution ($\lambda_{ex} = 375$ nm, pulsed diode laser).

	Volume of	α_1	τ_1 (ns)	<\t>*	χ^2
	FLT Solution Added (µL)			(ns)	
	0	1	12.5	15.20	1.12
	300	1	3.9	3.9	0.95
<\cdrts>* =	$= \alpha_1 \tau_1$				

Type of	Amount of	F	luorescenc	e	Average	SD	Error	RSD
Precision	FLT Added		Intensity		Intensity			(%)
	(µL)				(cps)			
	0	128845.5	129772.3	128809.9	129142.6	545.7	0.002	0.23
	50	56947.1	56489.1	56331.9	56589.4	319.6	-0.006	-0.63
Intra	100	29964.7	29901.0	29720.8	29862.2	126.5	-0.003	-0.34
Day	150	16433.3	16230.6	16287.4	16317.1	104.6	-0.007	-0.71
	200	10243.7	10191.2	10187.1	10207.3	31.6	-0.004	-0.36
	250	7825.1	7783.0	7559.8	7722.6	142.6	-0.013	-1.31
	300	6244.2	6237.6	6050.2	6177.3	110.2	-0.011	-1.07
	0	128809.9	129344.2	128721.8	128958.6	336.8	0.001	0.12
	50	56331.9	56536.3	56215.1	56361.1	162.6	0.001	0.05
Inter	100	29720.8	29513.8	29471.7	29568.8	133.4	-0.005	-0.51
Day	150	16287.4	16232.5	16037.8	16185.9	131.2	-0.006	-0.62
	200	10187.1	10113.5	9963.4	10088.0	114.0	-0.010	-0.97
	250	7559.8	7667.5	7583.3	7603.5	56.6	0.006	0.58
	300	6050.2	6149.1	5946.3	6048.5	101.4	0.000	-0.03

Table S6. Evaluation of intra-day, inter-day accuracy and precision study of change in fluorescence intensity of 1' after incremental addition of 5 mM aqueous solution of DNOC.

Table S7. Comparison between the spiked and observed concentrations and recovery percentages of furaltadone (FLT) in serum and urine samples.

Type of Sample	Spiked Conc.	Observed	Recovery (%)
	of FLT (µM)	Conc. of DNOC (µM)	
	11.9	12.2	102.5
Serum	23.7	23.4	98.7
	35.1	35.3	100.5
	11.9	11.8	99.1
Urine	23.7	23.2	97.8
	35.1	34.9	98.9

Type of Water	Spiked Conc. of DNOC (µM)	Observed Conc. of DNOC (µM)	Recovery (%)
	11.9	11.6	97.5
Milli-Q Water	23.7	23.2	97.9
	35.1	35.2	100.3
	11.9	12.1	102.5
Tap Water	23.7	23.8	100.7
	35.1	34.9	99.5
	11.9	11.6	97.6
Lake Water	23.7	23.9	100.8
	35.1	35.3	100.6
	11.9	12.2	102.5
River Water	23.7	23.4	98.7
	35.1	34.9	99.4

Table S8. Comparison between the spiked and observed concentrations and recovery percentages of DNOC in different real water specimens.

Table S9. Comparison between the spiked and observed concentrations and recovery percentages of furaltadone (FLT) in different real water specimens.

Type of Water	Spiked Conc. of FLT (uM)	Observed Conc. of FLT (uM)	Recovery (%)
	11.9	12.1	102.0
Milli-Q Water	23.7	23.8	100.5
	35.1	34.9	99.5
	11.9	11.6	97.6
Tap Water	23.7	23.6	99.5
	35.1	35.2	100.4
	11.9	11.7	98.2
Lake Water	23.7	23.4	98.7
	35.1	35.3	100.6
	11.9	11.6	97.3
River Water	23.7	23.2	98.1
	35.1	35.2	100.4

Figure S53. PXRD profiles of 1' after DNOC and furaltadone (FLT) sensing.

Figure S54. FE-SEM image of 1 after DNOC sensing.

Figure S55. FE-SEM image of 1 after furaltadone (FLT) sensing.

Figure S56. ATR-IR spectra of 1' before and after treatment of DNOC and furaltadone (FLT).

Table S10. Comparison of the response time, detection limit and analyte used for the reported fluorescence based chemosensors of DNOC in the literature.

Sl.	Sensor Material	Type of	Sensing	Mode of	Detection	Response	K_{sv}	Ref.
No.		Material	Medium	Detection	Limit	Time	(M^{-1})	
1	$\begin{array}{c} [Zr_6O_4(OH)_4(C_{12}H_8\\ N_4O_4)_4(CF_3CO_2)_2]\\ (1') \end{array}$	MOF	water	turn-off	0.5 nM	5 s	5×10^7	this work
2	Ethyleneglycol esters of 1-pyrene carboxylic acid	organic- molecul es	$H_2O:$ THF (99.9 : 0.1 (v/v))	turn-off	101 ppb and 223 ppb	-	3.07×10^4 and 3.14×10^4	5
3	6,8-bis-(thiopen-2- yl)-1,3,7- triazapyrene	organic- molecul e	tris buffer	turn-off	2397 ppb	-	0.35×10^4	6

Table S11. Comparison of the response time, detection limit and analyte used for the reported fluorescence based chemosensors of furaltadone (FLT) in the literature.

S1.	Sensor Material	Type of	Sensing	Mode of	Detecti	Respons	$K_{sv}(\mathbf{M}^{-1})$	Ref.
No		Material	Medium	Detection	on	e Time		
					Limit			
1	$\begin{array}{l} [Zr_6O_4(OH)_4(C_{12}H_8\\ N_4O_4)_4(CF_3CO_2)_2]\\ (1') \end{array}$	MOF	water	turn-off	1.1 nM	5 s	2.1×10^7	this work
2	Tryptophan-capped gold nanoclusters	nano- clusters	buffer solution of pH 6.0	turn-off	0.087 μΜ	30s	-	7
3	Cu NCs@PVP	nano- clusters	PBS (pH = 6.0)	turn-off	0.045 μM	90 s	-	8
4	Histidine-Cu NCs	nano- clusters	PBS solution (pH=8)	turn-off	0.085 μM	10 s	4.3×10^{3}	9
5	$\begin{array}{l} Cd_3(L1)\\ (MTC)_2(H_2O)_6\\ L1 = (E)-4,4'-\\ (ethene-1,2-\\ diyl)bis(N-pyridin-3-\\ yl)benzamide) \end{array}$	coordinat ion polymers	water	turn-off	94 nM	-	2.2×10^{5}	10
6	$\begin{array}{l} [M(L)(HCPG)_2\\ (H_2O)_2] (M = Co,\\ Ni) \end{array}$	coordinat ion polymers	water	turn-off	0.7 μM 0.22 μM	49 s 35 s	$\begin{array}{c} 2.3\times10^4\\ 4.1\times10^4\end{array}$	11

Details for structural modelling of Compound 1:

We used molecular mechanics to model the solvent-free structure of compound $\mathbf{1}$, utilizing the universal force field (UFF) through the Forcite module in Biovia Materials Studio.¹² We began our homology modelling of the unknown structure of $\mathbf{1}$ with the reported MOF structure (MOR-2) as our reference point.¹³

Simulated Crystallographic Information File (CIF) for Guest-Free Compound 1.

```
data_Compound 1
_audit_creation_date
                           2024-09-04
_audit_creation_method
                             'Materials Studio'
_symmetry_space_group_name_H-M 'P-4'
_symmetry_Int_Tables_number
                                 81
_symmetry_cell_setting
                             tetragonal
loop_
_symmetry_equiv_pos_as_xyz
 x,y,z
 -x,-y,z
 y,-x,-z
 -y,x,-z
_cell_length_a
                         14.6770
_cell_length_b
                         14.6770
_cell_length_c
                         20.7940
_cell_angle_alpha
                          90.0000
_cell_angle_beta
                          90.0000
_cell_angle_gamma
                            90.0000
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
```

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

01	0	1.00304	0.11619	0.05899	0.00500	Uiso	1.00
02	0	0.17109	0.16303	0.08801	0.08000	Uiso	1.00
03	0	0.08985	0.08885	0.16728	0.08000	Uiso	1.00
C4	С	0.15209	0.14683	0.14840	0.08000	Uiso	1.00
C5	С	0.20513	0.19867	0.20022	0.08000	Uiso	1.00
C6	С	0.16474	0.21513	0.26102	0.08000	Uiso	1.00
C7	С	0.29496	0.23377	0.19082	0.08000	Uiso	1.00
N8	N	0.34693	0.21232	0.13440	0.10000	Uiso	0.50
09	0	0.49816	0.61626	0.55897	0.00500	Uiso	1.00
O10	0	0.66241	0.67074	0.58759	0.08000	Uiso	1.00
011	0	0.58582	0.59276	0.66713	0.08000	Uiso	1.00
C12	С	0.64427	0.65434	0.64794	0.08000	Uiso	1.00
C13	С	0.69559	0.70886	0.69914	0.08000	Uiso	1.00
C14	С	0.68288	0.68960	0.76512	0.08000	Uiso	1.00
C15	С	0.75964	0.77867	0.68409	0.08000	Uiso	1.00
N16	N	0.77478	0.80653	0.61904	0.10000	Uiso	0.50
017	0	0.88401	1.00296	0.05860	0.00500	Uiso	1.00
018	0	0.83763	0.17074	0.08863	0.08000	Uiso	1.00
019	0	0.91509	0.09180	0.16753	0.08000	Uiso	1.00
C20	С	0.85623	0.15300	0.14893	0.08000	Uiso	1.00
C21	С	0.80562	0.20532	0.20112	0.08000	Uiso	1.00
C22	С	0.82508	0.19196	0.26669	0.08000	Uiso	1.00
C23	С	0.73713	0.26890	0.18656	0.08000	Uiso	1.00
O24	0	0.38416	0.49803	0.55880	0.00500	Uiso	1.00
025	0	0.33449	0.66772	0.58823	0.08000	Uiso	1.00
O26	0	0.41163	0.58913	0.66735	0.08000	Uiso	1.00
C27	С	0.35284	0.65028	0.64840	0.08000	Uiso	1.00

C28	С	0.30095	0.70194	0.69997	0.08000	Uiso	1.00
C29	С	0.28524	0.66157	0.76008	0.08000	Uiso	1.00
C30	С	0.26491	0.78979	0.69017	0.08000	Uiso	1.00
031	0	0.25284	0.07150	-0.00471	0.08000	Uiso	0.50
O32	0	0.08569	0.24887	0.00557	0.08000	Uiso	0.50
Zr33	Zr	0.11610	0.11020	-0.00006	0.00500	Uiso	1.00
C34	С	0.70986	1.00807	-0.00770	0.00000	Uiso	1.00
O35	0	0.74993	0.58435	0.49748	0.08000	Uiso	0.50
O36	0	0.57280	0.75256	0.50232	0.08000	Uiso	0.50
Zr37	Zr	0.61109	0.61499	0.49984	0.00500	Uiso	1.00
C38	С	0.20915	0.49348	0.49632	0.00000	Uiso	1.00
C39	С	0.10927	0.49266	0.49488	0.00000	Uiso	1.00
C40	С	0.61053	0.00931	-0.01118	0.00000	Uiso	1.00
H41	Н	0.09670	0.19019	0.27084	0.00000	Uiso	1.00
H42	Н	0.33467	0.15167	0.10962	0.00000	Uiso	1.00
N43	N	0.42215	0.26666	0.11779	0.00000	Uiso	1.00
H44	Н	0.63550	0.63705	0.77983	0.00000	Uiso	1.00
H45	Н	0.72021	0.83630	0.59464	0.00000	Uiso	1.00
N46	N	0.86332	0.82360	0.59668	0.00000	Uiso	1.00
H47	Н	0.87824	0.14449	0.28022	0.00000	Uiso	1.00
H48	Н	0.72001	0.28095	0.13734	0.00000	Uiso	1.00
H49	Н	0.31000	0.59292	0.76769	0.00000	Uiso	1.00
H50	Н	0.27674	0.82432	0.64499	0.00000	Uiso	1.00
F51	F	0.07873	0.53324	0.55076	0.00000 1	Uiso	1.00
F52	F	0.07708	0.40409	0.49130	0.00000 1	Uiso	1.00
F53	F	0.08051	0.54155	0.44178	0.00000 1	Uiso	1.00
F54	F	0.57945	-0.01933	0.04791	0.00000	Uiso	1.00
F55	F	0.58253	-0.04945	-0.05924	0.00000	Uiso	1.00
F56	F	0.57948	0.09625	-0.02424	0.00000	Uiso	1.00
C57	С	0.07266	0.23704	0.60034	0.00000	Uiso	1.00

C58	С	0.76207	0.48626	0.91971	0.00000	Uiso	1.00
C59	С	1.01944	0.78578	0.57875	0.00000	Uiso	1.00
H60	Η	0.91256	0.69470	0.61725	0.00000	Uiso	1.00
C61	С	0.29792	0.43813	0.93719	0.00000	Uiso	1.00
N62	Ν	0.27642	1.08020	0.44204	0.00000	Uiso	1.00
C63	С	0.22613	1.15364	0.45811	0.00000	Uiso	1.00
C64	С	0.13561	1.13652	0.44628	0.00000	Uiso	1.00
N65	Ν	0.12864	1.05174	0.42319	0.00000	Uiso	1.00
H66	Н	0.48435	0.16974	0.06125	0.00000	Uiso	1.00
N67	Ν	0.63266	0.26998	0.02652	0.00000	Uiso	1.00
C68	С	0.68747	0.34340	0.02379	0.00000	Uiso	1.00
C69	С	0.64896	0.41409	0.05789	0.00000	Uiso	1.00
N70	Ν	0.56964	0.38505	0.08241	0.00000	Uiso	1.00
H71	Н	0.75362	0.34345	0.00113	0.00000	Uiso	1.00
H72	Η	0.67793	0.48090	0.06592	0.00000	Uiso	1.00
H73	Н	0.74662	0.78433	0.47813	0.00000	Uiso	1.00
H74	Η	0.92098	0.81745	0.45371	0.00000	Uiso	1.00
H75	Η	0.67095	0.50262	0.58614	0.00000	Uiso	1.00
H76	Η	0.57833	0.52500	0.88830	0.00000	Uiso	1.00
H77	Η	0.98146	0.06988	0.59160	0.00000	Uiso	1.00
H78	Η	0.82839	1.00428	0.08540	0.00000	Uiso	1.00
Zr79	Zr	0.00000	0.00000	0.11528	0.00500	Uiso	1.00
Zr80	Zr	0.50000	0.50000	0.61534	0.00500	Uiso	1.00
loop_							
_geom_bond_atom_site_label_1							
_geom_bond_atom_site_label_2							
_geom_bond_distance							
_geom_bond_site_symmetry_2							
_ccdc_geom_bond_type							

O1 Zr33 2.065 4_655 S

01	Zr33	2.066	1_655 S
01	Zr79	2.069	1_655 S
02	C4	1.308 .	А
O2	Zr33	2.146	. S
03	C4	1.309 .	А
03	Zr79	2.147	. S
C4	C5	1.532 .	S
C5	C6	1.417 .	А
C5	C7	1.429 .	А
C6	C30	1.417	4_656 A
C6	H41	1.083	. S
C7	N8	1.434 .	S
C7	C29	1.421	4_656 A
N8	H42	1.044	. S
N8	N43	1.405	. S
09	Zr37	2.064	. S
09	Zr80	2.070	. S
09	Zr37	2.064	4_656 S
O10	C12	1.305	. A
O10	Zr37	2.137	. S
011	C12	1.308	. A
011	Zr80	2.145	. S
C12	C13	1.530	. S
C13	C14	1.413	. A
C13	C15	1.425	. A
C14	C23	1.413	4_656 A
C14	H44	1.083	. S
C15	N16	1.430	. S
C15	C22	1.420	4_656 A
N16	H45	1.044	. S

1110	1940	1.403	. 5
O17	Zr33	2.061	2_665 S
O17	Zr79	2.071	1_665 S
O17	Zr33	2.061	4_665 S
O17	H78	0.989	. S
O18	C20	1.310	. A
O18	Zr33	2.150	4_655 S
019	C20	1.305	. A
019	Zr79	2.133	1_655 S
C20	C21	1.523	. S
C21	C22	1.407	. A
C21	C23	1.405	. A
C22	C15	1.420	3_566 A
C22	H47	1.083	. S
C23	C14	1.413	3_566 A
C23	H48	1.069	. S
O24	Zr37	2.059	4_656 S
O24	Zr80	2.067	. S
O24	Zr37	2.064	2_665 S
O24	H75	0.989	2_665 S
O25	C27	1.305	. A
O25	Zr37	2.143	4_656 S
O26	C27	1.306	. A
O26	Zr80	2.136	. S
C27	C28	1.518	. S
C28	C29	1.402	. A
C28	C30	1.408	. A
C29	C7	1.421	3_566 A
C29	H49	1.083	. S
C 20	C6	1 417	3 566 A
O25 O26 O26 C27 C28 C28	Zr37 C27 Zr80 C28 C29 C30	 2.143 1.306 2.136 1.518 1.402 1.408 	4_656 . A . S . S . A . A

C30	H50	1.082	. S
031	Zr33	2.088	. S
031	C34	1.291	2_665 A
032	Zr33	2.087	. S
032	C34	1.291	3_465 A
Zr33	O17	2.061	2_665 S
Zr33	O18	2.150	3_565 S
Zr33	01	2.065	3_565 S
Zr33	01	2.066	1_455 S
Zr33	O17	2.061	3_465 S
C34	O31	1.291	2_665 A
C34	C40	1.460	1_565 S
C34	O32	1.291	4_665 A
035	Zr37	2.087	. S
035	C38	1.291	2_665 A
036	Zr37	2.097	. S
036	C38	1.293	3_566 A
Zr37	O25	2.143	3_566 S
Zr37	O24	2.059	3_566 S
Zr37	O24	2.064	2_665 S
Zr37	09	2.064	3_566 S
C38	C39	1.466	. S
C38	O35	1.291	2_665 A
C38	O36	1.293	4_656 A
C39	F51	1.381	. S
C39	F52	1.385	. S
C39	F53	1.383	. S
C40	C34	1.460	1_545 S
C40	F54	1.376	. S
C40	F55	1.383	. S

C40	F56	1.382	. S
N43	C58	1.293	3_566 D
N46	C57	1.297	2_665 D
C57	N46	1.297	2_665 D
C57	C59	1.463	2_665 S
C57	H60	1.084	2_665 S
C58	N43	1.293	4_656 D
C58	C61	1.462	2_665 S
C58	H66	1.077	4_656 S
C59	C57	1.463	2_665 S
C59	N62	1.347	3_566 D
C59	N65	1.343	3_566 S
H60	C57	1.084	2_665 S
C61	C58	1.462	2_665 S
C61	N67	1.348	3_566 D
C61	N70	1.347	3_566 S
N62	C63	1.348	. S
N62	C59	1.347	4_656 D
C63	C64	1.374	. D
C63	H73	1.078	2_675 S
C64	N65	1.338	. S
C64	H74	1.082	2_675 S
N65	C59	1.343	4_656 S
N65	H77	1.037	3_576 S
H66	C58	1.077	3_566 S
N67	C68	1.346	. S
N67	C61	1.348	4_656 D
C68	C69	1.378	. D
C68	H71	1.079	. S
C69	N70	1.341	. S

C69	H72	1.082	. S
N70	C61	1.347	4_656 S
N70	H76	1.044	3_566 S
H73	C63	1.078	2_675 S
H74	C64	1.082	2_675 S
H75	O24	0.989	2_665 S
H76	N70	1.044	4_656 S
H77	N65	1.037	4_756 S
Zr79	03	2.147	2 S
Zr79	O17	2.071	2_665 S
Zr79	O17	2.071	1_445 S
Zr79	01	2.069	1_455 S
Zr79	01	2.069	2_655 S
Zr79	019	2.133	1_455 S
Zr79	019	2.133	2_655 S
Zr80	011	2.145	2_665 S
Zr80	O26	2.136	2_665 S
Zr80	09	2.070	2_665 S
Zr80	O24	2.067	2_665 S

References:

- 1. O. K. Farha, A. Özgür Yazaydın, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr and J. T. Hupp, *Nat. Chem.*, 2010, **2**, 944-948.
- 2. C. A. Parker and W. Rees, *Analyst*, 1960, **85**, 587-600.
- 3. S. Nandi, E. Sharma, V. Trivedi and S. Biswas, *Inorg. Chem.*, 2018, **57**, 15149-15157.
- 4. J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, *J. Am. Chem. Soc.*, 2008, **130**, 13850-13851.
- 5. I. Kovalev, L. Sadieva, O. Taniya, D. Kopchuk, G. Zyryanov, E. Ulomsky, V. Rusinov and O. Chupakhin, *Chimica Techno Acta.*, 2021, **8**.
- I. A. Lavrinchenko, T. D. Moseev, M. V. Varaksin, G. V. Zyryanov, O. S. Taniya, A. N. Tsmokalyuk, O. P. Demidov, I. V. Borovlev, V. N. Charushin and O. N. Chupakhin, *New J Chem.*, 2022, 46, 5121-5128.

- 7. Z. Cai, H. Li, X. Yang, M. Zhang, J. Guo, Y. Su and T. Liu, *Spectrochim. Acta A Mol. Biomol. Spectrosc.*, 2024, **308**, 123748.
- 8. Z.-f. Cai, X.-s. Wang, H.-y. Li, P.-l. Cao, X.-r. Han, P.-y. Guo, F.-y. Cao, J.-x. Liu, X.-x. Sun and T. Li, *Spectrochim. Acta A Mol. Biomol. Spectrosc.*, 2022, **279**, 121408.
- 9. S. Zhang, M.-l. Jin, Y.-x. Gao, W.-q. Li, X.-y. Wang, X.-x. Li, J.-q. Qiao and Y. Peng, *Chem. Pap.*, 2022, **76**, 7855-7863.
- 10. J. Geng, J. Sun, H. Lin and X. Wang, New J. Chem., 2023, 47, 9701-9707.
- 11. J. Geng, Y. Chen, S. Xie, H. Lin and X. Wang, Inorg. Chem., 2023, 62, 5158-5167.
- 12. A. K. Rappé, C. J. Casewit, K. Colwell, W. A. Goddard III and W. M. Skiff, *J. Am. Chem. Soc.*, 1992, **114**, 10024-10035.
- S. Rapti, D. Sarma, S. A. Diamantis, E. Skliri, G. S. Armatas, A. C. Tsipis, Y. S. Hassan, M. Alkordi, C. D. Malliakas and M. G. Kanatzidis, *J. Mater. Chem. A*, 2017, 5, 14707-14719.