Supplementary Information

Enhancing lithium storage performance with silicon-based anodes: a theoretical study on transition metal-integrated $SiO_x/M@C$ (M = Fe, Co, Ni) heterostructures

Mianying Huang $\dagger^a,$ Yueying Chen $\dagger^a,$ Wenhai Zeng b, Yiqing Liu a, Zhiguang Xu

^{a,*}, Yongbo Wu ^{c,d}, Xiaoming Lin ^{a,*} Xuan Xu ^a

^a Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China.

^b College of City Construction, Jiangxi Normal University, Nanchang 330022, P. R. China.

^c Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China.

^d Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China.

† These authors contributed equally to this work.

*Author to whom correspondence should be addressed: E-mail: chzgxu@scnu.edu.cn; linxm@scnu.edu.cn.

Fig. S1 Geometrically optimized structures of (a) SiO₂; (b) SiO₂@C; (c) SiO₂/M@C.

Fig. S2 Configurations before and after optimization of all directions for SiO_x/Fe@C.

Fig. S3 Configurations before and after optimization of all directions for $SiO_x/Co@C$.

Fig. S4 Configurations before and after optimization of all directions for SiO_x/Ni@C.

Compound	Energy/eV		
SiO _x /Fe@C	-24099.0845		
SiO _x /Co@C	-25524.3973		
SiO _x /Ni@C	-28019.2597		
SiO _x @C	-17200.865		
Fe	-6913.93799		
Со	-8327.92068		
Ni	-6901.50753		
Li	-188.143764		

Table S1 The energies of E(SiOx/M@C), E(SiOx@C), and E(M).

Material	Direction	$\Delta Ea/eV$	Direction	$\Delta Ea/eV$
Li+SiO _x /Fe@C	Si _I	-24289.6282	Fe _I	-24289.5908
	Si_II	-24289.6282	Fe_{II}	-24289.3222
	Si _{III}	-24289.6281	Fe _{III}	-24289.6031
	$\mathrm{Si}_{\mathrm{IV}}$	-24289.6288	Fe _{IV}	-24289.6031
Li+SiO _x /Co@C	Si _I	-25714.9522	Co _I	-25714.9236
	Si_II	-25715.0467	Co _{II}	-25714.9237
	Si _{III}	-25715.0462	Co _{III}	-25714.9239
	$\mathrm{Si}_{\mathrm{IV}}$	-25714.6591	Co _{IV}	-25714.9218
Li+SiO _x /Ni@C	Si _I	-28210.2236	Ni _I	-28209.6864
	$\mathrm{Si}_{\mathrm{II}}$	-28210.1111	Ni _{II}	-28209.9026
	Si _{III}	-28209.8913	Ni _{III}	-28209.8906
	Si_IV	-28209.9019	Ni _{IV}	-28209.9022

Table S2 The energies of E(Li + SiOx/M@C).