Supplementary materials for

Novel Eu³⁺-activated Ca₃Ga₂Ge₄O₁₄ red-emitting phosphors with high quantum efficiency for plant growth lighting and white LEDs

Xiaohua Li^{a,b}, Jina Ding^{a,*}, Qifeng Zeng^b, Xinyi Lin^b, Linwen Jiang^b, Anhua Wu^c

^aState Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, P. R. China

^bSchool of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo 315211, P. R. China

^cShanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, P. R. China

(Ca _{1-x} Eu _x) ₃ Ga ₂ Ge ₄ O ₁₄	a = b(Å)	c (Å)	<i>V</i> (Å ³)	α, β, γ
0	8.06877	4.97158	280.31	$\alpha = \beta = 90^\circ, \gamma = 120^\circ$
0.01	8.05892	4.93866	277.78	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
0.03	8.03490	4.95230	276.88	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
0.05	8.05927	4.92006	276.75	$\alpha=\beta=90^\circ,\gamma=120^\circ$
0.07	8.03526	4.94375	276.43	$\alpha=\beta=90^\circ,\gamma=120^\circ$
0.09	8.07939	4.88786	276.32	$\alpha=\beta=90^\circ,\gamma=120^\circ$
0.12	8.05359	4.91803	276.25	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
0.15	8.06559	4.87423	274.61	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
0.20	8.05740	4.87776	274.25	$\alpha=\beta=90^\circ,\gamma=120^\circ$

Tab. S1. The lattice parameters of $Ca_3Ga_2Ge_4O_{14}$: xEu^{3+} .

Tab. S2. The chromaticity coordinates, CCT and color purity at different Eu³⁺ doping concentrations of CGG.

NO.	$(Ca_{1-x}Eu_x)_3Ga_2Ge_4O_{14}$	CIE (x, y)	CCT(K)	Color purity (%)
1	0.01	(0.5936, 0.4015)	1628	91.34%
2	0.03	(0.6063, 0.3888)	1629	94.08%
		1		

*Corresponding author.

E-mail addresses: dingjina@nbu.edu.cn (Jina Ding).

3	0.05	(0.6155, 0.3816)	1668	96.35%
4	0.07	(0.6202, 0.3767)	1709	96.47%
5	0.09	(0.6178, 0.3785)	1690	96.86%
6	0.12	(0.6217, 0.3761)	1719	97.89%
7	0.15	(0.6211, 0.3756)	1720	97.68%
8	0.20	(0.6289, 0.3690)	1811	96.68%

Tab. S3. Some reported red emitting phosphors for w-LEDs.

Activator	Compound	λ_{ex}	λ_{em}	Color purity	QY	Ref.
11011/0101	Compositu	(nm)	(nm)	(70)		
12% Eu ³⁺	Ca ₃ Ga ₂ Ge ₄ O ₁₄	394	618	97.89	94.26	This work
5% Eu ³⁺	$Na_2Tb_{0.5}(MoO_4)(PO_4)$	394	614	95.30	43.60	[1]
6% Eu ³⁺	Y ₂ SiWO ₈	395	619	96.61	14.80	[2]
2.5% Eu ³⁺	$Na_5W_3O_9F_5$	466	607	97.44	29.10	[3]
$40\% Eu^{3+}$	Ca_2GdTaO_6	396	615	96.00	83.00	[4]
50% Eu ³⁺	Ca_2GdSbO_6	396	612	94.90	73.00	[5]

References

[1] Z. Guo, Z. C. Wu, B. Milićević, L. Zhou, W. U. Khan, J. Hong, J. Shi, M. Wu, $Na_2Tb_{0.5}(MoO_4)(PO_4)$: 0.5Eu³⁺: A red-emitting phosphor with both high thermal stability and high colour purity, Opt. Mater. 97 (2019) 109376.

[2] S. Wang, C. Xu, X. Qiao, High thermal stability and color purity of red-emitting phosphor Y_2SiWO_8 : Eu³⁺ for w-LEDs: Synthesis and photoluminescence properties, Ceram. Int. 47 (2021) 1063-1075.

[3] G. Wu, J. Xue, X. Li, Q. Bi, M. Sheng, Z. Leng, A novel red-emitting Na₅W₃O₉F₅: Eu³⁺ phosphor with high color purity for blue-based WLEDs, Ceram. Int. 49 (2023) 10615-10624.

[4] S. Wang, Q. Sun, B. Devakumar, J. Liang, L. Sun, X. Huang, Novel highly efficient and thermally stable Ca₂GdTaO₆: Eu³⁺ red-emitting phosphors with high color purity for UV/blue-excited WLEDs, J. Alloy. Compd. 804 (2019) 93-99.

[5] Z. Zhang, L. Sun, B. Devakumar, J. Liang, S. Wang, Q. Sun, S. J. Dhoble, X. Huang, Novel highly luminescent double-perovskite Ca₂GdSbQ₆: Eu³⁺ red phosphors with high color purity for white LEDs: Synthesis, crystal structure, and photoluminescence properties, J. Lumin. 221 (2020) 117105.

Current	ССТ	CRI	CIE x	CIE y
20 mA	4808 K	91.64	0.3514	0.3604
40 mA	4921 K	90.78	0.3479	0.3571
60 mA	5008 K	90.44	0.3453	0.3550
80 mA	5058 K	90.19	0.3439	0.3537
100 mA	5096 K	90.00	0.3428	0.3527

Tab. S4. CCT, CRI and color coordinates of prepared white-LEDs as a function of currents.

Fig. S1 XRD Rietveld refinement patterns of CGG: 12%Eu³⁺.

Fig. S2 The CIE coordinates at different temperatures from 303 K to 483 K.

Fig. S3 The EL emission spectra of the developed w-LEDs under 20-100 mA injected current.

Fig. S4 The photos of the developed w-LEDs under 20-100 mA injected current.