Electronic Supplementary Information (ESI)

Cationic first-row transition metal saccharinate complexes with tris(2-pyridylmethyl)amine: Synthesis, structures and anticancer studies

Ceyda Icsel ^{a,*}, Şeyma Aydinlik ^b, Muhittin Aygun ^c, Veysel T. Yilmaz ^a

^a Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey

^b TUBITAK Marmara Research Center, Climate and Life Sciences, Biotechnology Research Group, 41470 Gebze, Kocaeli, Turkey

^c Department of Physics, Faculty of Sciences, Dokuz Eylul University, 35210 Izmir, Turkey

Corresponding Author: Assoc. Prof. Dr. Ceyda Icsel Department of Chemistry Karadeniz Technical University 61080 Trabzon, Turkey

E-mail address: cydyilmaz@ktu.edu.tr (C. Icsel)

	Fe	Ni	Cu
Empirical formula	$C_{50}H_{50}CI_2Fe_2N_{10}O_{10}S_2$	$C_{32}H_{34}N_6NiO_{10}S_2$	$C_{32}H_{26}CuN_6O_6S_2$
Formula weight	1197.72	785.48	718.25
Crystal system	Triclinic	Monoclinic	Triclinic
Space group	$P\overline{1}$	<i>P</i> 2 ₁	$P\overline{1}$
a (Å)	18.776(8)	10.148(2)	10.5153(9)
b (Å)	19.465(7)	16.206(3)	12.5550(11)
<i>c</i> (Å)	19.694(6)	10.515(2)	13.0375(14)
α (°)	99.02(3)	90	62.831(10)
β (°)	112.39(3)	94.258(16)	80.017(8)
γ (°)	116.69(4)	90	84.164 (7)
V (Å ³)	5457(4)	1724.5(5)	1507.6 (3)
Т(К)	295(2)	295(2)	295(2)
Z	4	2	2
$ ho_{ m calc}$ (g cm ⁻³)	1.458	1.513	1.582
µ (mm⁻¹)	0.772	0.75	0.921
<i>F</i> (000)	2472	816	738
heta (°)	3.061–25.105	2.971–25.027	3.182–25.027
Collected refls	32405	6532	8356
Data/parameters	10907/897	4420/470	5295/424
Goodness-of-fit	0.974	0.991	1.031
<i>R</i> 1 [<i>l</i> >2σ]	0.124	0.052	0.056
wR ₂	0.384	0.084	0.112

Table S1 Crystallographic data and structure refinement for Fe, Ni and Cu

D–H…A	D–H (Å)	H…A (Å)	D…A (Å)	D–H…A (°)
Fe				
O1W—H1WA…O2	0.85	2.19	2.78 (3)	127
O1W—H1WB…O2W	0.85	2.09	2.80 (3)	141
O2W—H2WA····O4W ⁱ	0.85	2.39	2.84 (3)	114
O2W—H2WB····O7 ⁱⁱ	0.85	2.16	2.93 (3)	149
O3W—H3WA…O5	0.85	2.15	2.80 (3)	133
O3W—H3WB…O4W	0.85	1.98	2.80 (3)	162
O4W—H4WA…O2W ⁱ	0.85	2.32	2.84 (3)	120
O4W—H4WB…O11 ⁱⁱⁱ	0.85	2.58	2.95 (3)	107
O5W—H5WA…O13	0.85	2.26	2.93 (3)	135
O5W—H5WB…O3W	0.85	1.94	2.72 (3)	154
O6W—H6WA…O11	0.85	2.53	3.21 (3)	138
O6W—H6WB…N5 ^{iv}	0.85	2.31	3.02 (3)	141
Ni				
O1W—H1WA…N5	0.85	1.87	2.691 (8)	161
O1W—H1WB…O5	0.85	1.94	2.785 (7)	173
O2W—H2WA…O3W	0.85	1.86	2.706 (10)	170
O2W—H2WB…N6	0.85	2.00	2.818 (9)	162
O3W—H3WA…O4 [∨]	0.85	1.97	2.812 (10)	174
O3W—H3WB…O1	0.85	2.05	2.867 (9)	162
O4W—H4WA…O1 ^{vi}	0.85	2.30	2.862 (11)	124
O4W—H4WB…O4	0.85	2.08	2.865 (10)	153
^a Symmetry codes:	(i) − <i>x</i> +1, − <i>y</i> , ·	- <i>z</i> +1; (ii) <i>x</i> +	1, <i>y</i> , <i>z</i> ; (iii) − <i>x</i>	

Table S2 Hydrogen bond geometry (Å, °) in Fe and Ni^a

(iv) x, y+1, z.; (v) -x+1, y-1/2, -z+2; (vi) -x+1, y+1/2, -z+2.

Fig. S1 UV-Vis spectra of metal sac complexes of tpma in MeOH (10 μ M).

Fig. S2 IR spectra of metal sac complexes of tpma.

Fig. S3 continued

Fig. S3 continued

Fig. S3 ESI-MS spectra of metal sac complexes of tpma.

Fig. S4 continued

Fig. S4 continued

Fig. S4 continued

Fig. S4 ¹H NMR and ¹³C spectra of metal sac complex of tpma.

Fig. S5 Thermal analysis curves of metal sac complexes of tpma.

Fig. S6 The dose-response graphics for the tpma ligand, the metal sac complexes of tpma and cisplatin obtained from SRB assay, the viability of cell lines after 48 h of treatment. Results are represented as mean \pm standard deviation (*n* = 3).

Fig. S7 The HPLC chromatogram of **Fe** (100 μ M) dissolved in an aqueous solution of MeOH (1;1, v:v). The mobile phase consists of water containing 0.1% acetic acid (solvent A), and acetonitrile-water mixture with 0.1% acetic acid (v:v, 1:1, solvent B). Gradient conditions: at 0 min, 95% solvent A and 5% solvent B, and at 25 min, 10% A and 90% B. The total run time is 30 min at 262 nm.

Fig. S8 Time-dependent UV-Vis spectra of 10 μ M solution of Fe in saline.

Fig. S9 Hoechst staining (blue) and Annexin V/PI staining (green/red) to detect apoptosis cells in **Fe** and cisplatin. HT29 cells were treated with IC₇₅ doses of **Fe** (3 μ M) and cisplatin (33.2 μ M) at 12 h. Merge is Hoechst staining/Annexin V/PI staining overlay. Magnification ×10. The scale bar is 300 μ m.

Fig. S10 HT29 cells were incubated with Mitotracker (red), Calcein AM (green), and Hoechst 33342 (blue) and imaged using an inverted fluorescent microscope (magnification ×40). Mitotracker red staining reveals that **Fe** and cisplatin-treated HT29 cells display defects in mitochondrial morphology compared to control at 12 h. Representative images show the presence of large globular aggregates (blue arrows) in **Fe** and cisplatin-treated HT29 cells. Merge is Hoechst /Calcein AM/Mitotraker RED staining overlay. The scale bar is 100 µm.

Fig. S11 Representative microscopy images from HT29 cells treated with **Fe** and cisplatin for 12h. Each treated cells were fixed and processed for γ -H2AX immunofluorescent staining. γ -H2AX staining is green; nuclei are stained with DAPI blue. γ -H2AX expression was detected in HT29 cells treated with **Fe** and cisplatin but not in control cells. Magnification: x40. Merge is Hoechst/ γ -H2AX staining overlay. The scale bar is 100 µm.