Electronic Supplementary Information for **Multinuclear beryllium amide and imide complexes: structure, properties and bonding**

Deniz F. Bekiş,^a Lewis R. Thomas-Hargreaves,^a Sergei I. Ivlev^a and Magnus R. Buchner^{*a}

a) Fachbereich Chemie, Philipps-Universität Marburg, 35043 Marburg, Germany, E-mail: magnus.buchner@chemie.uni-marburg.de (M.R.B.)

Table of Contents	
Crystallographic Details	
NMR Spectra	
IR Spectra	
Computational results	
Coordinates of Optimized Structures	

Crystallographic Details

Table S1: Crystal data and details of the structure determination for [Be(HNMes)₂]₃ (1), [(py)₂Be(HNMes)₂] (2) and [Be(HNDipp)₂]₂ (3).

	$[Be(HNMes)_2]_3$ (1) · C ₆ H ₆	[(py) ₂ Be(HNMes) ₂] (2)	[Be(HNDipp) ₂] ₂ (3)
Empirical formula	$C_{54}H_{72}Be_3N_6$, C_6H_6	$C_{28}H_{34}BeN_4$	$C_{48}H_{72}Be_2N_4$
Relative molecular mass	910.31	435.60	723.11
Crystal system	triclinic	monoclinic	monoclinic
Space group (No.)	P1 (2)	<i>I2/a</i> (15)	P21/c (14)
Radiation / Å	1.54186	1.54186	1.54178
a / Å	14.2365(15)	16.1582(15)	9.5804(3)
<i>b</i> / Å	14.6407(15)	8.6300(5)	16.0927(5)
c / Å	15.7210(18)	17.5982(15)	14.6676(5)
lpha / deg	63.743(8)	90	90
<i>β</i> / deg	71.969(9)	95.030(7)	102.993(2)
γ/deg	72.777(8)	90	90
V / ų	2745.2(6)	2444.5(3)	2203.47(12)
Ζ	2	4	2
F(000) / e	984	936	792
$ ho_{calc.}$ / g·cm ⁻³	1.101	1.184	1.090
μ / mm ⁻¹	0.476	0.531	0.462
ϑ range / °	3.205 – 76.230	5.046 - 76.127	4.137 – 74.576
Range of Miller indices	$-17 \le h \le 17$	$-20 \le h \le 18$	$-11 \le h \le 11$
	$-17 \le k \le 18$	$-10 \le k \le 6$	$-20 \le k \le 20$
	− 19 ≤ <i>l</i> ≤ 15	-21 ≤ / ≤ 22	− 17 ≤ <i>l</i> ≤ 18
Reflections collected, unique	67425, 11226	15241, 2534	68071, 4499
Restraints, parameters	2052, 927	0, 157	0, 258
R _{int}	0.0661	0.0257	0.0482
$R_1 \ (I \geq 2\sigma(I))$	0.0497	0.0380	0.0362
R1 (all data)	0.0942	0.0482	0.0405
$wR_2 (I \geq 2\sigma(I))$	0.1183	0.1043	0.0946
wR ₂ (all data)	0.1377	0.1085	0.0978
S	0.838	1.064	1.047
Δho_{min} , Δho_{max} / $e \cdot Å^{-3}$	-0.204, 0.201	-0.157, 0.242	-0.180, 0.282

	[Be(NPh ₂)(μ ₂ -HNDipp)] ₂ (4)	[Be(NCPh ₂) ₂] ₃ (5)
Empirical formula	$C_{48}H_{56}Be_2N_4$	$C_{78}H_{60}Be_3N_6$
Relative molecular mass	706.98	1108.35
Crystal system	monoclinic	triclinic
Space group (No.)	P2 ₁ /c (14)	P1 (2)
Radiation / Å	1.54186	1.54186
a / Å	9.4884(9)	9.9415(6)
b / Å	9.8022(7)	15.0952(7)
c / Å	22.2345(19)	23.1922(13)
lpha / deg	90	71.835(4)
<i>β</i> / deg	99.949(7)	87.988(6)
γ/deg	90	71.142(4)
<i>V</i> / Å ³	2036.9(3)	3121.1(3)
Ζ	2	2
F(000) / e	760	1164
$ ho_{calc.}$ / g·cm ⁻³	1.153	1.179
μ / mm ⁻¹	0.499	0.522
ϑ range / °	4.037 – 76.128	3.243 - 70.070
Range of Miller indices	$-6 \le h \le 11$	-12 ≤ <i>h</i> ≤ 5
	$-12 \le k \le 12$	$-18 \le k \le 18$
	-26 ≤ <i>l</i> ≤ 27	- 28 ≤ <i>l</i> ≤ 28
Reflections collected, unique	24532, 4152	70021, 11726
Restraints, parameters	69, 283	0, 785
R _{int}	0.0535	0.0285
$R_1 \ (l \geq 2\sigma(l))$	0.0518	0.055
R1 (all data)	0.0640	0.067
$wR_2 (I \ge 2\sigma(I))$	0.1488	0.157
wR2 (all data)	0.1578	0.165
S	1.061	1.086
$\Delta ho_{ m min}$, $\Delta ho_{ m max}$ / $e \cdot { m \AA}^{-3}$	-0.223, 0.288	-0.236, 0.315

Table S2: Crystal data and details of the structure determination for $[Be(NPh_2)(\mu_2-HNDipp)]_2$ (4) and $[Be(NCPh_2)_2]_3$ (5).

Figure S1. ¹H NMR spectrum of $[Be(HNMes)_2]_3$ (1) in C₆D₆. The major isomer is annotated with a hash while for the minor one an asterisk is used. Bridging and terminal HNMes units are marked with "b" and "t", respectively.

Figure S2. $^{1}H^{1}H$ COSY NMR spectrum of [Be(HNMes)₂]₃ (1) in C₆D₆.

Figure S3. Phaseselective ${}^{1}H{}^{1}H$ NOESY NMR spectrum of [Be(HNMes)₂]₃ (1) in C₆D₆.

Figure S4. ⁹Be NMR spectrum of $[Be(HNMes)_2]_3$ (1) in C_6D_6 . The major isomer is annotated with a hash while for the minor one an asterisk is used.

Figure S5. ¹³C NMR spectrum of $[Be(HNMes)_2]_3$ (1) in C₆D₆. The major isomer is annotated with a hash while for the minor one an asterisk is used. Bridging and terminal HNMes units are marked with "b" and "t", respectively.

Figure S6. $^{1}H^{13}C$ HMQC NMR spectrum of [Be(HNMes)₂]₃ (1) in C₆D₆.

Figure S8. ¹H NMR spectrum of [(py)₂Be(HNMes)₂] (2) in C₆D₆.

Figure S9. ¹H NMR spectrum of $[(py)_2Be(HNMes)_2]$ (2) in py-d₅. The signals denoted with an asterisk originate from Et₂O and those marked with a hash from isobutene.

Figure S10. ⁹Be NMR spectrum of [(py)₂Be(HNMes)₂] (2) in C₆D₆.

Figure S12. ${}^{13}C$ NMR spectrum of [(py)₂Be(HNMes)₂] (2) in C₆D₆.

Figure S13. ¹H NMR spectrum of [Be(HNDipp)₂]₂ (3) in C₆D₆.

Figure S14. ⁹Be NMR spectrum of $[Be(HNDipp)_2]_2$ (3) in C_6D_6 .

Figure S16. ¹H NMR spectrum of $[Be(NPh_2)(\mu_2$ -HNDipp)]₂ (4) in C₆D₆.

Figure S17. ⁹Be NMR spectrum of $[Be(NPh_2)(\mu_2-HNDipp)]_2$ (4) in C_6D_6 .

Figure S18. ${}^{13}C$ NMR spectrum of [Be(NPh₂)(μ_2 -HNDipp)]₂ (4) in C₆D₆.

Figure S19. ¹H NMR spectrum of $[Be(NCPh_2)_2]_3$ (5) in C_6D_6 .

Figure S20. 9 Be NMR spectrum of $[Be(NCPh_2)_2]_3$ (5) in C₆D₆.

Figure S21. ${}^{13}C$ NMR spectrum of [Be(NCPh₂)₂]₃ (5) in C₆D₆.

IR Spectra

Figure S23. IR spectrum of [(py)₂Be(HNMes)₂] (2).

Figure S25. IR spectrum of $[Be(NPh_2)(\mu_2-HNDipp)]_2$ (4).

Figure S26. IR spectrum of [Be(NCPh₂)₂]₃ (5).

Computational results

IAO atomic charges

Figure S27. Lewis structure with IAO atomic charge analysis partial charges of selected atoms of complex 1. The partial charges that are adjacent to the Mes label correspond to the C–N carbon atom.

Figure S28. Lewis structure with IAO atomic charge analysis partial charges of selected atoms of free H₂NMes. Due to symmetry, the partial charge of the unlabeled amine proton is the same as that of the labeled proton.

Figure S29. Lewis structure with IAO atomic charge analysis partial charges of selected atoms of complex 2. The partial charges that are adjacent to the Mes label correspond to the C-N carbon atom. Due to symmetry partial charge of the same ligands are equal.

Figure S30. Lewis structure with IAO atomic charge analysis partial charges of selected atoms of free pyridine. Due to symmetry, the partial charges of unlabeled carbon atoms are not given and are equal to the with a mirror symmetry operation connected carbon atoms.

Figure S31. Lewis structure with IAO atomic charge analysis partial charges of selected atoms of complex **3**. The partial charges that are adjacent to the Dipp label correspond to the C-N carbon atom. Due to symmetry partial charge of Be1/Be2, N1/N2 and N2/N3 are equal.

Figure S32. Lewis structure with IAO atomic charge analysis partial charges of selected atoms of free H₂NDipp. Due to symmetry, the partial charge of the unlabeled amine proton is the same as that of the labeled proton.

Figure S33. Lewis structure with IAO atomic charge analysis partial charges of selected atoms of complex 4. The partial charges that are adjacent to the Dipp label correspond to the C-N carbon atom.

Figure S34. Lewis structure with IAO atomic charge analysis partial charges of selected atoms of free HNPh₂. Due to symmetry, the partial charges of unlabeled carbon atoms are not given and are equal to the with a mirror symmetry operation connected carbon atoms.

Figure S35. Lewis structure with IAO atomic charge analysis partial charges of selected atoms of [(NPh₂)BePh]₂. Due to symmetry partial charge of Be1/Be2, N1/N2 and C1/C2 are equal.

Figure S36. Lewis structure with IAO atomic charge analysis partial charges of selected atoms of complex 5.

Figure S37. Lewis structure with IAO atomic charge analysis partial charges of selected atoms of free HNCPh₂.

LMO analysis

Table S3: Comparison of the orbital contribution in the LMO bonding analysis of complex **1**, **Fig. 4 a, b**. Orbital contribution below 2% are not listed. Labelling scheme according to figure 3.

Bond	Atom + total contribution to LMO	s/p orbital contribution
2 v g Po N	N1/6 62%	N 27% 2s, 35% 2p
2 X 0 DE-N	Be1/3 38%	Be 15% 2s, 21% 2p
	N1/6 89%	N 89% 2p
Z X π Be-N	Be1/3 11%	Be 8% 2p

Table S4: Comparison of the orbital contribution in the LMO bonding analysis of complex **1**, **Fig. 6 c**. Orbital contribution below 2% are not listed. Labelling scheme according to figure 3.

Bond	Atom + total contribution to LMO	s/p orbital contribution
	N3 55%	N 16% 2s, 39% 2p
2e3c σ Be–N–Be	Be2 25%	Be 4% 2s, 18% 2p
	Be1 20%	Be1 5% 2s, 12% 2p
	N2 57%	N 19% 2s, 38% 2p
2e3c σ Be–N–Be	Be2 29%	Be 8% 2s, 18% 2p
	Be114%	Be1 10% 2p
	N5 56%	N 18% 2s, 38% 2p
2e3c σ Be–N–Be	Be2 30%	Be 7% 2s <i>,</i> 20% 2p
	Be3 14%	Be2 10% 2p
	N4 56%	N 17% 2s, 39% 2p
2е3с <i>о</i> Ве–N–Ве	Be2 23%	Be 5% 2s, 15% 2p
	Be3 21%	Be2 6% 2s, 12% 2p

Table S5: Comparison of the orbital contribution in the LMO bonding analysis of complex 1, Fig. 6 d. Orbital contributionbelow 2% are not listed. Labelling scheme according to figure 3.

Bond	Atom + total contribution to LMO	s/p orbital contribution
	N4 83%	N 82% 2p
2e3c π Be–N–Be	Be2 8%	Be 8% 2p
	Be3 9%	Be2 6% 2p
	N3 82%	N 81% 2p
2e3c π Be–N–Be	Be2 9%	Be 8% 2p
	Be1 9%	Be1 6% 2p
	N2/5 87%	N 86% 2p
2 X DE-IN	Be1/3 13%	Be 5% 2s, 8% 2p

Figure S38. Three sets of LMOs of **1**. Two σ-type LMOs (left) for terminal C–N bond and four σ-type LMOs (middle, right) for central C–N bond. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Table S6: Comparison of the orbital contribution in the LMO bonding analysis of complex 1 in the C–N bond. Orbital contribution below 2% are not listed. Labelling scheme according to figure 3.

Bond	Atom + total contribution to LMO	s/p orbital contribution
2 x a N_C torminal	N1/6 50%	N 22% 2s, 28% 2p
	C 50%	C 17% 2s, 32% 2p
a N. C	N3 56%	N 22% 2s, 34% 2p
	C 44%	C 15% 2s, 29% 2p
σN C	N2 57%	N 22% 2s, 34% 2p
0 N-C	C 53%	C 14% 2s, 29% 2p
σN C	N5 56%	N 22% 2s, 34% 2p
0 N-C	C 44%	C 14% 2s, 28% 2p
	N4 55%	N 21% 2s, 34% 2p
0 N-C	C 45%	C 14% 2s, 29% 2p

Figure S39. Two LMOs of H₂NMes. One σ -type LMOs (left) and one π -lone pair LMOs (right) for C–N bond of free H₂NMes. The contour value for LMO isosurface plots is 0.05 a.u. N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Figure S40. Two LMOs of H₂NMes.Two σ-type LMOs for C–H bond of free H₂NMes. The contour value for LMO isosurface plots is 0.05 a.u. N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Table 57: Comparison of the orbital contribution in the LMO bonding analysis of free H ₂ NMes. Orbital contribution bel	ow
2% are not listed.	

Bond	Atom + total contribution to LMO	s/p orbital contribution
a N C	N 39%	N 22% 2s, 38% 2p
0 N-C	C 61%	C 6% 2s, 32% 2p
π–lone pair N	N 100%	N 13% 2s, 87% 2p
	N 61%	N 20% 2s, 41% 2p
2 X 0 N-H	H 39%	H 38% 2s

Table S8: Comparison of the orbital contribution in the LMO bonding analysis of complex 2, Fig. 6 a, b. Orbital contribution below 2% are not listed. Labelling scheme according to figure 5.

Bond	Atom + total contribution to LMO	s/p orbital contribution
	N1 74%	N 31% 2s, 42% 2p
Z X O BE-N	Be 26%	Be 8% 2s, 16% 2p
	N1 88%	N 88% 2p
2 X // Be-N	Be 12%	Be 11% 2p

Table S9: Comparison of the orbital contribution in the LMO bonding analysis of complex 2, Fig. 6 c. Orbital contribution below 2% are not listed. Labelling scheme according to figure 5.

Bond	Atom + total contribution to LMO	s/p orbital contribution
	N2 81%	N 31% 2s, 50% 2p
2 X 0 Be-N	Be 19%	Be 15% 2p

Figure S41. Two sets of LMOs of **2**. Two σ-type LMOs for mesityl ligand C–N bond. The contour value for LMO isosurface plots is 0.05 a.u. N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Table S10: Comparison of the orbital contribution in the LMO bonding analysis of **2** C–N bond. Orbital contribution below 2% are not listed.

Bond	Atom + total contribution to LMO	s/p orbital contribution
	N 58%	N 11% 2s, 30% 2p
2 X U C-N	C 42%	C 24% 2s, 34% 2p

Bond	Atom + total contribution to LMO	s/p orbital contribution
2	N1 54%	N 25% 2s, 29% 2p
2 X O BE-N	Be 46%	Be 21% 2s, 23% 2p
2e3c π Be−N−C	N1 87%	N 87% 2p
	Be 7%	Be 5% 2p
	C 7%	C 4% 2p
	N1 87%	N 87% 2p
2е3с π Ве-N-С	Be1 7%	Be 5% 2p
	C 5%	C 3% 2p

Table S11: Comparison of the orbital contribution in the LMO bonding analysis of complex **3**, **Fig. 8 a**, **b**. Orbital contribution below 2% are not listed. Labelling scheme according to figure 7.

Table S12: Comparison of the orbital contribution in the LMO bonding analysis of complex **3**, **Fig. 8 c, d**. Orbital contribution below 2% are not listed. Labelling scheme according to figure 7.

Bond	Atom + total contribution to LMO	s/p orbital contribution
	N2' 53%	N 16% 2s, 37% 2p
2e3c σ Be–N	Be 17%	Be 4% 2s, 10% 2p
	Be' 30%	Be 10% 2s, 17% 2p
	N2 53%	N 16% 2s, 37% 2p
2e3c σ Be–N	Be 30%	Be 10% 2s, 17% 2p
	Be' 17%	Be 4% 2s, 10% 2p
2 x π Be-N	N2 85%	N 85% 2p
	Be 15%	Be 4% 2s, 9% 2p

Table S13: Comparison of the orbital contribution in the LMO bonding analysis of complex **3**, Fig. 8 e. Orbital contribution below 2% are not listed. Labelling scheme according to figure 7.

Bond	Atom + total contribution to LMO	s/p orbital contribution
	C 49%	C 12% 2s, 36% 2p
2 x σ C–H…Be	H 45%	H 44% 2s
	Be 6%	Be 5% 2p

Figure S42. Four sets of LMOs of **3**. Four σ–type LMOs for C–N bond. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase

Table S14: Comparison o	of the orbital co	ntribution in th	ne LMO bondi	ng analysis of	complex 3 .	Orbital co	ntribution	below 2%
are not listed.								

Bond	Atom + total contribution to LMO	s/p orbital contribution
$2 \times \pi C = N1/4$	N 50%	N 23% 2s, 27% 2p
$2 \times 0 C = N1/4$	C 50%	C 14% 2s, 35% 2p
2 x σ C-N2/3	N 54%	N 21% 2s, 33% 2p
	C 46%	C 15% 2s, 29% 2p

Figure S43. Two LMOs of H₂NDipp.Two σ-type LMOs for C–H bond of free H₂NDipp. The contour value for LMO isosurface plots is 0.05 a.u. N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Figure S44. Two LMOs of H₂NDipp. One σ -type (left) and π -lone pair LMOs for C–N bond of free H₂NDipp. The contour value for LMO isosurface plots is 0.05 a.u. N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Table S15: Comparison of the orbital contribution in the LMO bonding analysis of free H₂NDipp. Orbital contribution below 2% are not listed.

Bond	Atom + total contribution to LMO	s/p orbital contribution
	N 61%	N 22% 2s, 38% 2p
0 N-C	C 39%	C 6% 2s, 33% 2p
π–lone pair N	N 100%	N 14% 2s, 86% 2p
2 x σ N-H	N 61%	N 20% 2s, 41% 2p
	Н 39%	H 38% 2s

Figure S45. Two sets of LMOs of **4**. Two 2e3c–type LMOs (left) and two π–type LMOs (right) for Be–N(Dipp) bond. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Table S16: Comparison	of the orbital cont	ribution in the Ll	VO bonding a	nalysis of com	plex 2. Orbital	contribution	below 2%
are not listed.							

Bond	Atom + total contribution to LMO	s/p orbital contribution
	N3/2 51/51%	N3/2 15/15% 2s, 36/37% 2p
2 x 2e3c σ Be–N–Be	Be1 27/23%	Be1 10/4% 2s 13/14% 2p
	Be2 22/26%	Be2 6/8% 2s 12/14% 2p
2e3c	N2 80%	N 80% 2p
	Be1 9%	Be1 7% 2p
	Be2 11%	Be2 8% 2p
πBe-N	N3 86%	N 86% 2p
	Be2 14%	Be2 5% 2s, 8% 2p

Figure S46. Two sets of LMOs of **4**. Two σ -type LMOs (left) and two π -type LMOs (right) for Be–N(NPh₂) bond. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Table S17: Comparison of the orbital contribution in the LMO bonding analysis of complex 4. Orbital contribution below 29	%
are not listed.	

Bond	Atom + total contribution to LMO	s/p orbital contribution
σ Be-N	N1 56%	N 25% 2s, 31% 2p
	Be1 44%	Be1 19% 2s 23% 2p
a Do N	N4 52%	N 24% 2s, 38% 2p
o Be-IN	Be2 48%	Be2 22% 2s 23% 2p
	N1 87%	N 87% 2p
2e3c	Be1 7%	Be1 4% 2p
	C 7%	C 4% 2p
πBe-N	N4 93%	N 93% 2p
	Be2 7%	Be2 4% 2p

Figure S47. Six sets of LMOs of 1. Four σ-type LMOs for C–N bond. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase

Bond	Atom + total contribution to LMO	s/p orbital contribution
- C N1	N 49%	N 21% 2s, 28% 2p
0 C-NI	C 51%	C 19% 2s, 31% 2p
σ.C. N1	N 55%	N 23% 2s, 31% 2p
0 C-NI	C 45%	C 17% 2s, 27% 2p
σ.C. Ν.4	N 49%	N 20% 2s, 28% 2p
0 C-N4	C 51%	C 20% 2s, 30% 2p
σ.C-N4	N 50%	N 21% 2s, 28% 2p
0 C-114	C 50%	C 19% 2s, 30% 2p
σ C-N2	N 57%	N 23% 2s, 33% 2p
	C 43%	C 16% 2s, 26% 2p
σ C-N3	N 56%	N 23% 2s, 33% 2p
	C 44%	C 16% 2s, 27% 2p

Table S18: Comparison of the orbital contribution in the LMO bonding analysis of complex 4. Orbital contribution below 2% are not listed.

Figure S48. Two LMOs of HNPh₂. Two σ-type LMOs for C–N bond of free HNPh₂. The contour value for LMO isosurface plots is 0.05 a.u. N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Figure S49. Two LMOs of HNPh₂. One σ-type (left) and π-lone pair LMOs for C–H bond of free HNPh₂. The contour value for LMO isosurface plots is 0.05 a.u. N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Table S19: Comparison of the orbital contribution in the LMO bonding analysis of free HNPh₂. Orbital contribution below 2% are not listed.

Bond	Atom + total contribution to LMO	s/p orbital contribution
2 x σ N-C	N 60%	N 25% 2s, 34% 2p
	C 40%	C 13% 2s, 27% 2p
π–lone pair N	N 100%	N 100% 2p
<i>σ</i> N–H	N 61%	N 22% 2s, 38% 2p
	Н 39%	H 38% 2s

Figure S50. Two sets of LMOs of [(Ph₂N)BePh]₂. Two σ-type LMOs for Be–C bond. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Table S20: Comparison of the orbital contribution in the LMO bonding analysis of [(Ph₂N)BePh]₂. Orbital contribution below 2% are not listed.

Bond	Atom + total contribution to LMO	s/p orbital contribution	
2 x σ Be-C	C 49%	C 26% 2s, 22% 2p	
	Be 59%	Be 29% 2s, 21% 2p	

Figure S51. Two sets of LMOs of $[(Ph_2N)BePh]_2$. Two 2e3c-type LMOs (left) and and two π -type LMOs (right) for Be–N bond. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Bond	Atom + total contribution to LMO	s/p orbital contribution	
	N 50%	N 14% 2s, 36% 2p	
2 x 2e3c σ Be–N–Be	Be1 23/26%	Be1 5/8% 2s 14% 2p	
	Be2 26/23%	Be2 8/5% 2s 14% 2p	
	N 77%	N 77% 2p	
2a/a = Da N/C Da	Be1 8%	Be1 7% 2p	
2040 / DE-N(C)-DE	Be2 9%	Be2 7% 2p	
	C 5%	С 3% 2р	
	N 81%	N 81% 2p	
2e3c π Be–N–Be	Be1 10%	Be1 8% 2p	
	Be2 9%	Be2 7% 2p	

Table S21: Comparison of the orbital contribution in the LMO bonding analysis of [(Ph₂N)BePh]₂. Orbital contribution below 2% are not listed.

Figure S52. Four sets of LMOs of [(Ph₂N)BePh]₂. Two σ-type LMOs (left) and two σ-type LMOs (right) for C–N bond. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Table S22: Comparison of the orbital contribution in the LMO bonding analysis of [(Ph₂N)BePh]₂ in the C–N bond. Orbital contribution below 2% are not listed.

Bond	Atom + total contribution to LMO	s/p orbital contribution
2 x σ N-C	N1/2 55%	N 20% 2s, 34% 2p
	C 45%	C 18% 2s, 27% 2p
2 x σ N-C	N1/2 61%	N 21% 2s, 39% 2p
	C 39%	C 12% 2s, 26% 2p

Figure S53. Two sets of LMOs of 5. Four 2e3c-type LMOs (left and right) for Be–N(CPh₂)–Be bond. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Figure S54. Two sets of LMOs of 5. Four 2e3c-type LMOs (left and right) for Be–N(CPh2)–Be bond. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Table S23: Comparison of the orbital contribution in the LMO bonding analysis of complex 5. Be1: Central Atom; Orbital contribution below 2% are not listed.

Atom + total contribution to LMO	s/p orbital contribution	
N 57%	N 43% 2s, 14% 2p	
Be1 23%	Be1 17% 2p	
Be2/3 20%	Be2/3 4% 2s, 13% 2p	
N 67%	N 67% 2p	
Be1 8%	Be1 3% 2s, 3% 2p	
Be2/3 12%	Be2/3 7% 2s, 4% 2p	
C 13%	С 8% 2р	
	Atom + total contribution to LMO N 57% Be1 23% Be2/3 20% N 67% Be1 8% Be2/3 12% C 13%	

Figure S55. Two sets of LMOs of **5**. Two σ -type LMOs (left) and two π -type LMOs (right) for Be–N(CPh₂) bond. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Table S24: Comparison of the orbital contribution in the LMO bonding analysis of complex 5. Be1: Central Atom; Orbital contribution below 2% are not listed.

Bond	Atom + total contribution to LMO	s/p orbital contribution	
$2 \sigma Po2/2 N$	N 60%	N 49% 2s, 11% 2p	
2 0 Bez/ 5-N	Be2/3 40% Be2/3 8% 2s, 20% 2p		
	N 76%	N 76% 2p	
2 π Be2/3–N–C	Be2/3 10%	Be2/3 8% 2p	
	C 14%	С 8% 2р	

Figure S56. Four sets of LMOs of **5**. Two σ-type and two π-type LMOs for the terminal C–N bonds. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase

Figure S57. Four sets of LMOs of **5**. Four σ-type LMOs for bridging C–N bonds. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase

Figure S58. Four sets of LMOs of **5**. Four π -type LMOs for bridging C–N bonds. The contour value for LMO isosurface plots is 0.05 a.u. Be: green, N: blue, C: grey, H: white. Red positive phase, blue negative phase

Bond	Atom + total contribution to LMO	s/p orbital contribution	
2 x a N_C torminal	N1/6 47%	N 28% 2s, 19% 2p	
	C 53%	C 24% 2s, 27% 2p	
π N. C torminal	N1 55%	N 55% 2p	
it N=C terminal	C 45%	C 43% 2p	
T N. C torminal	N6 57%	N 57% 2p	
	C 43%	C 41% 2p	
Ax a N C	N2/3/4/5 47%	N 26% 2s, 21% 2p	
4 X 0 N-C	C 53%	C 24% 2s, 28% 2p	
4 x π N_C	N2/3/4/5 61%	N 61% 2p	
4 X / N-C	C 39%	С 37% 2р	

Table S25: Comparison of the orbital contribution in the LMO bonding analysis of complex **5** in the C–N bond. Orbital contribution below 2% are not listed.

Figure S59. Two LMOs of HNCPh₂. One σ -type (left) for N–H bond and π -lone pair (right) LMOs for N–C bond of free ligand HNCPh₂. The contour value for LMO isosurface plots is 0.05 a.u. N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Figure S60. Two LMOs of HNCPh₂. One σ -type (left) for N–C bond and π -type (right) LMOs for N–C bond of free HNCPh₂. The contour value for LMO isosurface plots is 0.05 a.u. N: blue, C: grey, H: white. Red positive phase, blue negative phase.

Table S26: Comparison of the orbital contribution in the LMO bonding analysis of free HNCPh ₂ .	Orbital contribution below
2% are not listed.	

Bond	Atom + total contribution to LMO	1 + total contribution to LMO s/p orbital contribution	
	N 55%	N 24% 2s, 30% 2p	
0 N-C	C 45%	C 20% 2s, 25% 2p	
π N-C	N 61%	N 60% 2p	
	C 39%	С 37% 2р	
π–lone pair N	N 91%	N 37% 2s, 54% 2p	
	C 9%	С 6% 2р	
<i>σ</i> N–H	N 59%	N 19% 2s, 40% 2p	
	H 41%	H 40% 2s	

Table S27: Partial atomic charges (e⁻) of selected atoms in complex **1** obtained from Natural Population Analysis (NPA) and Intrinsic Atomic Orbitals (IAO) analysis. If only a single value is specified for a selection of atoms, then the values for each of the atoms will be the same.

	Partial charges	Partial charges / e ⁻	Partial charges / e ⁻	Partial charges / e ⁻
A t a m	/ e⁻	IAO method -	IAO method –	IAO method –
Atom	NPA method	IBOViewer	Turbomole default	Turbomole
			basis	correction
Be	1.66	1.48	1.94	1.48
Be1/2	1.67	1.51	1.95	1.51
NO /0 /4/5	-1.33/-1.32/-	-1.02/-1.00/-0.99/-	-1.24/-1.26/-1.26/-	-1.02/-1.00/-0.99/
112/5/4/5	1.32/-1.33	1.03	1.25	-1.03
C2/3/4/5	0.14/0.13/0.1	0.08	0.08	0.09
	3/0.14			0.08
N1/6	-1.22/-1.22	-0.96/-0.96	-1.14/-1.15	-0.96/-0.96
C1/6	0.15	0.10	0.10	0.10

Table S28: Partial atomic charges (e⁻) of selected atoms in the free ligand H₂NMes obtained from Natural Population Analysis (NPA) and Intrinsic Atomic Orbitals (IAO) analysis.

	Partial charges	Partial charges	Partial charges	Partial charges / e ⁻
	/ e⁻	/ e⁻	/ e⁻	IAO method –
Atom	NPA method	IAO method -	IAO method –	Turbomole
		IBOViewer	Turbomole	correction
			default basis	
N	-0.79	-0.54	-0.54	-0.54
С	0.15	0.10	0.10	0.10
Н	0.38	0.27	0.27	0.27

Table S29: Partial atomic charges (e⁻) of selected atoms in complex **2** obtained from Natural Population Analysis (NPA) and Intrinsic Atomic Orbitals (IAO) analysis. Due to symmetry the ligand atoms are equivalent in terms of partial charge.

	Partial charges /	Partial charges /	Partial charges /	Partial charges /
	e⁻	e⁻	e⁻	e⁻
Atom	NPA method	IAO method -	IAO method –	IAO method –
		IBOViewer	Turbomole	Turbomole
			default basis	correction
Ве	1.66	1.49	1.96	1.49
N _{py}	-0.57	-0.35	-0.44	-0.35
N _{Mes}	-1.18	-0.93	-1.07	-0.93
C _{Mes}	0.17	0.11	0.11	0.11
H _{Mes}	0.36	0.22	0.22	0.22

	Partial charges / e⁻ NPA method	Partial charges / e⁻ IAO method -	Partial charges / e⁻ IAO method –	Partial charges / e⁻
Atom		IBOViewer	Turbomole default	IAO method –
			basis	Turbomole
				correction
Be1/2	1.66	1.51	1.94	1.51
N2/3μ	-1.35	-1.01	-1.25	-1.01
C_{μ}	0.16	0.09	0.09	0.09
N1/4	-1.23	-0.95	-1.12	-0.95
С	0.17	0.11	0.11	0.11

Table S30: Partial atomic charges (e⁻) of selected atoms in complex **3** obtained from Natural Population Analysis (NPA) and Intrinsic Atomic Orbitals (IAO) analysis. Due to symmetry the ligand atoms are equivalent in terms of partial charge.

Table S31: Partial atomic charges (e^{-}) of selected atoms in the free ligand H₂NDipp obtained from Natural Population Analysis (NPA) and Intrinsic Atomic Orbitals (IAO) analysis.

-		D		
	Partial charges	Partial charges	Partial charges	Partial charges / e
	/ e⁻	/ e⁻	/ e⁻	IAO method – Turbomole
Atom	NPA method	IAO method -	IAO method –	correction
		IBOViewer	Turbomole	
			default basis	
N	-0.79	-0.54	-0.54	-0.54
С	0.15	0.10	0.10	0.10
Н	0.38	0.27	0.27	0.27

Table S32: Partial atomic charges (e⁻) of selected atoms in complex **4** obtained from Natural Population Analysis (NPA) and Intrinsic Atomic Orbitals (IAO) analysis. Due to symmetry the ligand atoms are equivalent in terms of partial charge.

	Partial charges / e⁻ NPA method	Partial charges / e⁻	Partial charges / e⁻	Partial charges / e⁻
Atom		IAO method -	IAO method –	IAO method –
		IBOViewer	Turbomole	Turbomole
			default basis	correction
Be1/2	1.66/1.68	1.50/1.51	1.93/1.94	1.50/1.51
N2/3 _µ	-1.36/-1.37	-1.03/-1.02	-1.27/-1.27	-1.03/-1.02
C2/3 _µ	0.18/0.16	0.11/0.09	0.11/0.10	0.11/0.09
N1/4	-0.98/-1.01	-0.75/-0.79	-0.92/-0.96	-0.75/-0.79
C1	0.14/0.16	0.10/0.12	0.11/0.12	0.10/0.12
C4	0.14/0.14	0.11/0.10	0.11/0.11	0.11/0.10

Table S33: Partial atomic charges (e⁻) of selected atoms in the free ligand HNPh₂ obtained from Natural Population Analysis (NPA) and Intrinsic Atomic Orbitals (IAO) analysis.

	Dartial charges	Dartial charges	Partial charges /	Partial charges / o-
	Faillai Charges	Failiai Charges	Failiai cilaiges /	Faillai Charges / e
	/ e⁻	/ e⁻	e⁻	IAO method –
Atom	NPA method	IAO method -	IAO method –	Turbomole
		IBOViewer	Turbomole default	correction
			basis	
N	-0.55	-0.31	-0.31	-0.31
С	0.15	0.11	0.11	0.11
Н	0.39	0.28	0.28	0.28

Table S34: Partial atomic charges (e⁻) of selected atoms in complex **5** obtained from Natural Population Analysis (NPA) and Intrinsic Atomic Orbitals (IAO) analysis. Due to symmetry partial charge of Be1/Be2, N1/N2 and C1/C2 are equal.

	Partial charges /	Partial charges /	Partial charges /	Partial charges /
	e⁻	e⁻	e⁻	e⁻
Atom	NPA method	IAO method -	IAO method –	IAO method –
		IBOViewer	Turbomole	Turbomole
			default basis	correction
Be1/2	1.61	1.45	1.95	1.45
N1/2	-1.11	-0.86	-1.08	-0.86
C1/2	-0.72	-0.63	-0.91	-0.63

Table S35: Partial atomic charges (e⁻) of selected atoms in complex **6** obtained from Natural Population Analysis (NPA) and Intrinsic Atomic Orbitals (IAO) analysis. Data analysis with IBOViewer was not possible, because the program showed file loading problems and crashed. Two different machines and program versions "v20211019-RevA" and "v20150427" were used without success. If only a single value is specified for a selection of atoms, then the values for each of the atoms will be the same.

	Partial	Partial charges /	Partial charges / e ⁻	Partial charges / e⁻
	charges /	e⁻	IAO method –	IAO method – Turbomole
Atom	e⁻	IAO method -	Turbomole default	correction
	NPA	IBOViewer	basis	
	method			
Be	1.66	-	1.94	1.49
Be1/2	1.67	-	1.95	1.51
N2/3/4/5	-1.15	-	-1.20	-0.96
C2/3/4/5	0.33	-	0.20	0.20
N1/6	-1.02	-	-1.08	-0.90
C1/6	0.27	_	0.18	0.17

Analysis (NPA) and Intrinsic Atomic Orbitals (IAO) analysis.					
	Partial charges	Partial charges	Partial charges	Partial charges / e ⁻	
	/ e⁻	/ e⁻	/ e⁻	IAO method –	
Atom	NPA method	IAO method -	IAO method –	Turbomole	

Table S36: Partial atomic charges (e⁻) of selected atoms in the free ligand HNCPh₂ obtained from Natural Population Analysis (NPA) and Intrinsic Atomic Orbitals (IAO) analysis.

Atom NPA method **IBOViewer** Turbomole correction default basis -0.46 -0.46 -0.46 Ν -0.59 С 0.26 0.18 0.18 0.18 Н 0.34 0.25 0.25 0.25

 Table S37:
 Changes IAO basis for IAO atomic charges.

1 s eigenvalue=-.47325407295449D+01 nsaos=4

0.99186043661042D+00-.10048796341397D-050.18193677767313D-010.19036517991340D-02 2 s eigenvalue=-.30924859523167D+00 nsaos=4

0.21907584757841D-040.56272019570987D+000.22803978978015D+000.31779430523373D+00

Coordinates of Optimized Structures

Table S38: Coordinates of the optimizes structure of 1 in XZY Ångstrom format.

atom	v		7
	X _2 01/5066	<u> </u>	7 0000050
и С	-6 4258761	-4.5905092 -0 2112/61	-2 8208511
н	-7 150126/	0.2113401	_2.0200314 _2.2275 <u>//</u> 1
н	-6 2556660	0.3727345	-3 7545402
н	-6.9066773	-1 1610721	-3 0818809
C C	-2 4072402	-2 1664201	-3.0818809
C	-3.4072402	-2 0021890	5.0527092
	-3.0043424	-3.9051669	5.0537965
	-4.1132427	-4.8850721	7 5640701
	-3.7009900	-3.7170379	2022520
н	-3.7977133	-2.9178900	8.3033329 7.505000
п	-4.0392725	-4.2808485	
н	-4.0/12/49	-5.2260810	2.8070525
Ľ	-3.6537569	-4.2608540	2.5797727
н	-2.7471050	-4.4469984	1.9931087
Н	6.0677494	0.8828064	-7.1922094
С	5.4855931	1.8065798	-7.1775051
Н	4.9798356	1.9008315	-8.1411198
N	1.7731024	1.9194245	-2.8353832
Н	1.1656372	2.7193863	-2.9611295
Н	-1.0457724	-1.8005981	-0.3925147
N	-1.4418745	-0.9116682	-0.1011266
Н	-3.0179662	-2.2028285	1.6862883
N	-2.4839666	-1.6794394	2.3685671
Н	2.1515202	-0.1783628	-0.1052669
N	1.4071325	-0.3380033	-0.7774393
Н	-0.5616651	1.1738084	1.9946492
N	-0.1675442	0.2574463	1.8028093
Н	-1.0171393	1.4960211	-1.5116379
N	-0.2169647	1.6535289	-0.9061253
C	-0.0193659	-0.9973565	-3.2112773
Н	-0.8082157	-0.6299818	-2.5509252
Н	0.5265424	-0.1285647	-3.5965987
Н	-0.5113215	-1.4720005	-4.0606641
С	0.8193796	4.8739050	0.6009021
Н	1.6428398	5.2603709	1.1944686
С	2.4693937	-1.4478959	3.7629380
Н	2.8887689	-2.4455749	3.8540011
С	1.4247816	-1.2511096	2.8683979
С	-1.2050870	5.2106834	-0.5861460
Н	-1.9967976	5.8656050	-0.9381286
С	0.9108557	-1.9580649	-2.5364107
С	-2.6966051	-0.7576288	-0.7373961
С	-3.5151885	0.3436924	-0.4420761
С	1.6372050	-1.5929716	-1.3944182
С	2.9753681	-0.4238925	4.5505796
С	0.8743288	0.0299850	2.7353851
С	1.3200179	1.0651820	3.5717025
С	0.8526643	3.5386358	0.2194301
С	-1.2165204	3.8822606	-0.9913083
С	-0.2111304	5.7273822	0.2331531
С	-3.1708126	-1.7474899	-1.6132587
C	1.1221900	-3.2118605	-3.0982506
C	2.0453642	-4.1112220	-2.5858763

Н	0.5523404	-3.4820701	-3.9825227
С	-0.2066276	3.0192228	-0.5385125
С	-3.1807491	1.2995176	0.6627540
Н	-3.2055203	0.7796408	1.6279715
Н	-2.2021606	1.7681946	0.5505124
Н	-3.9168835	2.1023276	0.7116252
С	2.8066006	-3.6955962	-1.5023367
Н	3.5778049	-4.3529541	-1.1117677
С	-4.7164886	0.4936425	-1.1248044
Н	-5.3362404	1.3544745	-0.8908049
С	-0.2452364	7.1513698	0.6966179
н	0.7617177	7.5407875	0.8582041
н	-0.7452197	7.7942063	-0.0303740
Н	-0.7875951	7.2455568	1.6427520
С	-2.2537791	3.4085479	-1.9643457
Н	-2.8475634	2.5699125	-1.5927044
Н	-2.9448692	4.2155552	-2.2074787
н	-1 7935347	3 0804927	-2 9036817
C	4 1302388	-0 6533588	5 4764570
н	4 1533795	-1 6844857	5 8339846
н	5 0832747	-0.4600621	4 9739178
н	4 0803545	0.0061204	6 3449323
C	2 0552537	2 7079834	0.5445325
н	1 8047461	1 7622186	1 029/001
н	2 620/581	2 /202128	-0.3686534
	2.0204381	2.4052120	1 2204276
C II	_4 2707072		-2 269/102
L L	-4.3737073	-2 2246267	-2.2064193
п С	-4.7270107	-2.5240207	-2.9490052
	0.8582440	-2.4174434	2.1203543
н	-0.1560234	-2.048///8	2.4644269
н	0.8158062	-2.2492305	1.0410335
H C	1.4005291	-3.308/751	2.2753423
L U	-2.4345433	-3.0421256	-1.7809457
н	-2.9548375	-3.6872161	-2.4888856
н	-1.4113019	-2.9181464	-2.141/123
Н	-2.3/23015	-3.5851917	-0.8306562
C	3.5766068	-2.0116569	0.1/05/95
Н	4.2192447	-2.8368400	0.4776105
н	4.2278179	-1.2080451	-0.1908431
Н	3.0747995	-1.6396738	1.0657838
С	2.2198753	-5.4733180	-3.1838166
Н	1.5717209	-6.2056842	-2.6921578
Н	1.9680756	-5.4756413	-4.2459135
Н	3.2477207	-5.8254428	-3.0775520
С	-5.1601261	-0.4242802	-2.0655979
С	2.3673991	0.8197315	4.4501245
Н	2.7060039	1.6294152	5.0897915
С	0.6236111	2.3914518	3.5983773
Н	1.1511584	3.0865593	4.2516123
Н	0.5436954	2.8637219	2.6170180
Н	-0.3948602	2.2871585	3.9891009
С	2.6348508	-2.4527635	-0.9075940
Ве	-0.0899053	0.1853578	0.0274200
Ве	-1.4315831	-0.8346694	1.5929084
Ве	1.1775117	1.0687354	-1.6754285
С	-2.5352422	-1.3855221	4.7888318
С	-2.8480066	-1.9081639	6.0375520
н	-2.6564025	-1.2949567	6.9142277

С	-3.3651750	-3.4246659	3.7882362
С	-2.7811265	-2.1499784	3.6374773
С	-1.9667597	-0.0088324	4.6820187
Н	-0.8947402	-0.0327184	4.4705384
Н	-2.4498925	0.5535095	3.8770274
Н	-2.1050383	0.5408635	5.6144324
Н	-4.3765197	-3.7816813	1.9075932
С	3.8731306	1.1319743	-3.7926983
С	4.7483680	1.1145727	-4.8709296
Н	5.6627534	0.5338438	-4.7812053
С	4.5053938	1.8151635	-6.0434927
С	3.3313795	2.5549953	-6.1083676
Н	3.1063268	3.1157398	-7.0118269
С	2.4267204	2.5988977	-5.0590836
С	2.6846631	1.8749575	-3.8770657
С	4.2101066	0.3762545	-2.5500068
Н	4.0282457	0.9858344	-1.6592165
Н	3.6089860	-0.5316804	-2.4555545
Н	5.2594703	0.0771110	-2.5507256
Н	6.1948824	2.6374876	-7.1008866
С	1.1679934	3.4005220	-5.1841504
Н	1.1116851	4.2020691	-4.4370851
Н	1.1037767	3.8694920	-6.1663829
Н	0.2772021	2.7762446	-5.0501146

Table S39: Coordinates of the optimizes structure of 2 in XZY Ångstrom format.

atom	Х	У	Z
Н	0.8278084	-2.0392275	-1.1349328
Ν	0.9732648	-1.1140475	-0.7539215
С	1.2044417	-1.2402305	0.6074399
С	0.9472902	-2.4534520	1.2781370
С	1.0899454	-2.5300731	2.6569812
Н	0.8633242	-3.4721373	3.1505033
С	1.7039333	-0.1611570	1.3633275
С	0.5073501	-3.6596405	0.5064730
Н	-0.4399558	-3.4922891	-0.0190311
Н	0.3683952	-4.5131950	1.1714045
Н	1.2458204	-3.9531915	-0.2507636
С	2.1574940	1.0945780	0.6902121
Н	3.0504451	0.9089118	0.0826723
Н	2.4059980	1.8581511	1.4286368
Н	1.3930539	1.5030351	0.0287358
С	-0.4674434	-1.8749263	-3.4815657
Ν	-1.0039583	-0.9423750	-2.6940100
Н	0.6066394	-2.0038998	-3.4033674
С	-1.2230204	-2.6399269	-4.3477273
Н	-0.7454967	-3.3900644	-4.9646907
С	-2.5920579	-2.4224848	-4.4025173
Н	-3.2153449	-3.0063789	-5.0696396
С	-3.1466022	-1.4471355	-3.5917104
Н	-4.2096628	-1.2434147	-3.6020200
С	-2.3170361	-0.7272196	-2.7495613
Н	-2.6678105	0.0493253	-2.0772255
Ве	0.000000	0.0000000	-1.4877802
Ν	-0.9732648	1.1140475	-0.7539215
Н	-0.8278084	2.0392275	-1.1349328

N	1.0039583	0.9423750	-2.6940100
С	-1.2044417	1.2402305	0.6074399
С	-0.9472902	2.4534520	1.2781370
С	-1.0899454	2.5300731	2.6569812
Н	-0.8633242	3.4721373	3.1505033
С	-1.7039333	0.1611570	1.3633275
С	-0.5073501	3.6596405	0.5064730
Н	0.4399558	3.4922891	-0.0190311
Н	-0.3683952	4.5131950	1.1714045
Н	-1.2458204	3.9531915	-0.2507636
С	-2.1574940	-1.0945780	0.6902121
Н	-3.0504451	-0.9089118	0.0826723
Н	-2.4059980	-1.8581511	1.4286368
Н	-1.3930539	-1.5030351	0.0287358
С	0.4674434	1.8749263	-3.4815657
Н	-0.6066394	2.0038998	-3.4033674
С	1.2230204	2.6399269	-4.3477273
Н	0.7454967	3.3900644	-4.9646907
С	2.5920579	2.4224848	-4.4025173
Н	3.2153449	3.0063789	-5.0696396
С	3.1466022	1.4471355	-3.5917104
Н	4.2096628	1.2434147	-3.6020200
С	2.3170361	0.7272196	-2.7495613
Н	2.6678105	-0.0493253	-2.0772255
С	1.4922261	-1.4443144	3.4207793
С	1.8153230	-0.2779549	2.7392392
Н	2.1683969	0.5827066	3.3012183
С	1.5507715	-1.5155190	4.9162458
Н	0.6046374	-1.1958916	5.3669303
Н	2.3339813	-0.8670768	5.3163450
Н	1.7474100	-2.5333446	5.2612928
С	-1.4922261	1.4443144	3.4207793
С	-1.8153230	0.2779549	2.7392392
Н	-2.1683969	-0.5827066	3.3012183
С	-1.5507715	1.5155190	4.9162458
Н	-0.6046374	1.1958916	5.3669303
Н	-2.3339813	0.8670768	5.3163450
Η	-1.7474100	2.5333446	5.2612928

Table S40: Coordinates of the optimizes structure of 3 in XZY Ångstrom format.

atom	х	У	Z
Н	-0.4061802	-0.0105056	-2.9216276
Ν	-0.9786219	-0.6340782	-2.3667307
С	-1.8184090	-1.3293090	-3.2191466
С	-1.8083014	-1.0287961	-4.6050789
С	-2.6722785	-2.3471056	-2.7474656
С	-1.1381023	-1.5427771	1.5972440
Ν	-0.9683743	-0.4736811	0.6871318
С	-0.3163842	-2.6777169	1.4975764
С	-2.1099274	-1.4471802	2.6130919
С	-2.7776473	-2.6235913	-1.2714782
Н	-1.8005842	-2.4170114	-0.8258471
С	-3.0530183	-0.2603032	2.6864438
Н	-3.3001922	0.0310535	1.6571023
С	-2.6194914	-1.7556669	-5.4631733
Н	-2.6054061	-1.5308100	-6.5225364

С	-0.4455268	-3.6788614	2.4522969
Н	0.1893873	-4.5544608	2.3898562
С	-0.9598048	0.1087947	-5.1324275
Н	0.0107002	0.0828014	-4.6205696
С	0.7077437	-2.8330648	0.3946268
н	0.4287274	-2.1658504	-0.4355818
С	-3.7919249	-1.6728226	-0.6399396
Н	-4 7850005	-1 8609431	-1 0560418
н	-3 5426129	-0.6302260	-0.8500948
н	-3 8427480	-1 8180685	0.0500540
C C	_2 1006521	-2 4777294	2 5/0/200
L L	-2.1990321	-2.4777294	1 2760/90
	-2.9413090		4.5209460
U U	-1.3077821	-3.301/330	5.4705590
П С	-1.4505250	-4.3707156	4.2142803
C	-3.4655155	-3.0451698	-3.64/5653
Н	-4.1150241	-3.8298596	-3.2//661/
С	-4.3878119	-0.5938010	3.3397746
Н	-4.8475615	-1.4766317	2.8909420
Н	-5.0757624	0.2461705	3.2232002
Н	-4.2782296	-0.7732720	4.4119555
Н	-4.0698409	-3.3242791	-5.6890941
С	-3.4469817	-2.7650880	-5.0012645
С	-2.4233379	0.9516349	3.3726671
Н	-2.2081573	0.7232789	4.4197719
Н	-3.1117388	1.8005052	3.3514502
Н	-1.4866329	1.2596883	2.9046852
С	-3.1214017	-4.0631076	-0.9156874
Н	-4.1543932	-4.3090502	-1.1740700
Н	-3.0092383	-4.2150464	0.1609279
Н	-2.4708513	-4.7711773	-1.4336168
С	2.1098092	-2.4410506	0.8547778
н	2.1336256	-1.4449967	1.3044349
н	2.8150401	-2.4727002	0.0191707
Н	2.4625847	-3.1428427	1.6147003
C	0.7159331	-4.2260545	-0.2234601
H	1.0920605	-4.9723656	0.4793683
н	1 3697334	-4 2417994	-1 0982878
н	-0.2840131	-4 5260917	-0 5376219
н	-1 5260898	0 1598618	-7 2345504
C C	-0 6367148	0.0146082	-6 6163100
с ц	-0.1993604	_0 9527278	-6 8730024
	0.0761042	0.3027278	-0.8730024 6 0000000
n C	1 6107762	1 4574750	-0.0000002
U U	-1.0107702	1.4374735	-4.0200003 F 260F101
п	-2.3522401	1.5490415	-5.5065161
п	-0.9570081	2.2840012	-5.1092602
	-1.8318357	1.5602926	-3./5/5010
ве	-0.4610484	-0.4729197	-0.9121/33
н	-1.7864621	0.1242497	0.7424169
Н	0.4061802	0.0105056	2.9216276
N	0.9786219	0.6340782	2.3667307
N	0.9683743	0.4736811	-0.6871318
С	1.8184090	1.3293090	3.2191466
С	1.8083014	1.0287961	4.6050789
С	2.6722785	2.3471056	2.7474656
С	1.1381023	1.5427771	-1.5972440
С	0.3163842	2.6777169	-1.4975764
С	2.1099274	1.4471802	-2.6130919
С	2.7776473	2.6235913	1.2714782
	S4	7	

Н	1.8005842	2.4170114	0.8258471
С	3.0530183	0.2603032	-2.6864438
Н	3.3001922	-0.0310535	-1.6571023
С	2.6194914	1.7556669	5.4631733
Н	2.6054061	1.5308100	6.5225364
С	0.4455268	3.6788614	-2.4522969
H	-0.1893873	4.5544608	-2.3898562
С	0.9598048	-0.1087947	5.1324275
H	-0.0107002	-0.0828014	4.6205696
C	-0.7077437	2.8330648	-0.3946268
H	-0.4287274	2.1658504	0.4355818
С	3.7919249	1.6728226	0.6399396
H	3.5426129	0.6302260	0.8500948
Н	3.8427480	1.8180685	-0.4415687
С	2.1996521	2.4777294	-3.5404390
H	2.9413090	2.4210679	-4.3269480
C	1.3677821	3.5817558	-3.4765398
H	1.4505256	4.3707156	-4.2142803
C	3 4655155	3 0451698	3 6475653
C	4.3878119	0.5938010	-3.3397746
H	4.8475615	1.4766317	-2.8909420
Н	5.0757624	-0.2461705	-3.2232002
Н	4.2782296	0.7732720	-4.4119555
C	3.4469817	2.7650880	5.0012645
C	2.4233379	-0.9516349	-3.3726671
H	2.2081573	-0.7232789	-4.4197719
Н	3.1117388	-1.8005052	-3.3514502
Н	1.4866329	-1.2596883	-2.9046852
С	3.1214017	4.0631076	0.9156874
Н	4.1543932	4.3090502	1.1740700
Н	3.0092383	4.2150464	-0.1609279
Н	2.4708513	4.7711773	1.4336168
С	-2.1098092	2.4410506	-0.8547778
H	-2.1336256	1.4449967	-1.3044349
Н	-2.8150401	2.4727002	-0.0191707
Н	-2.4625847	3.1428427	-1.6147003
С	-0.7159331	4.2260545	0.2234601
H	-1.0920605	4.9723656	-0.4793683
Н	-1.3697334	4.2417994	1.0982878
Н	0.2840131	4.5260917	0.5376219
С	0.6367148	-0.0146082	6.6163100
Н	0.1993604	0.9527278	6.8730024
Н	-0.0761042	-0.7967108	6.8888002
С	1.6107762	-1.4574759	4.8206603
Н	2.5522401	-1.5496415	5.3685181
Н	0.9570081	-2.2840612	5.1092862
Н	1.8318357	-1.5602926	3.7575010
Ве	0.4610484	0.4729197	0.9121733
Н	1.7864621	-0.1242497	-0.7424169
Н	1.5260898	-0.1598618	7.2345504
Н	4.7850005	1.8609431	1.0560418
Н	4.1150241	3.8298596	3.2776617
Н	4.0698409	3.3242791	5.6890941

Table S41: Coordinates of the optimizes structure of 4 in XZY Ångstrom format.

х

atom

у

Z

N	1.2128949	-1.3107362	-2.0894933
С	2.3054621	-2.1682153	-2.1740275
Ν	0.9527108	-0.4681877	0.8310167
С	1.1987104	-1.5522795	1.7150965
С	0.4063788	-1.1870679	-3.2529579
С	3.0311484	-2.5051855	-1.0232607
Н	2.7200189	-2.1206267	-0.0617475
С	2.1542844	-1.4053221	2.7340110
С	0.4744914	-2.7439488	1.5724750
С	4.1265138	-3.3453962	-1.0871619
Н	4.6564787	-3.5866249	-0.1720003
С	2.7319120	-2.7186912	-3.3898446
Н	2.1979020	-2.4803854	-4.3009257
С	2.9136110	-0.1045417	2.8875546
н	2.1960309	0.7100572	2.7199574
С	2.3704949	-2.4694597	3.5978000
н	3.0971136	-2.3690104	4.3937117
С	0.5130623	-0.0792992	-4.0857097
н	1.2542576	0.6759942	-3.8573452
С	4.5417777	-3.8846080	-2.2977248
С	3.8312486	-3.5608656	-3.4429295
н	4.1344977	-3.9675841	-4.4016669
С	-0.5441188	-2.1620578	-3.5544188
н	-0.6142899	-3.0358064	-2.9157190
С	0.7173308	-3.7764624	2.4704536
н	0.1674169	-4.7041366	2.3736411
С	1.6570761	-3.6488268	3.4762768
н	1.8358565	-4.4680087	4.1625112
С	4.0402694	0.0082568	1.8565081
Н	3.7020158	-0.1306172	0.8262994
С	3.4675922	0.1223878	4.2860091
н	2.6859133	0.0257938	5.0406218
С	-0.3234495	0.0654109	-5.1828779
Н	-0.2373642	0.9459504	-5.8089008
С	-1.3757602	-2.0230508	-4.6541167
Н	-2.1127432	-2.7878296	-4.8721280
С	-1.2701485	-0.9050868	-5.4710282
Н	-1.9240539	-0.7927240	-6.3279408
Ве	0.6395683	-0.5643644	-0.8310626
Н	1.6940969	0.2117536	0.9705064
С	-0.5671426	-2.9058205	0.4887205
С	-0.6676822	-4.3260932	-0.0506495
Н	-1.3375338	-4.3491270	-0.9134862
Н	-1.0787675	-5.0145745	0.6911909
Н	0.3096313	-4.6968318	-0.3643176
Н	-0.2465973	-2.3095581	-0.3759710
С	-1.9382230	-2.4020699	0.9345842
Н	-2.6590028	-2.4558375	0.1138895
Н	-1.9174767	-1.3692165	1.2968130
Н	-2.3175627	-3.0149411	1.7564035
Ν	-0.7392480	0.4205600	-0.8448963
Ν	-1.1865843	1.2198119	1.9954973
С	-2.2575439	2.1191503	1.8061428
С	-0.9092433	1.5512171	-1.6841746
С	-0.7947884	1.0492260	3.3422435
С	-2.2129394	3.1095590	0.8276670
Н	-1.3220174	3.2305774	0.2272599

С	-2.1171204	1.7191624	-2.3816152
С	0.1280272	2.4868392	-1.8117387
С	-3.2998098	3.9430628	0.6088247
Н	-3.2387490	4.6952981	-0.1694366
С	-3.4120631	2.0150146	2.5886380
Н	-3.4537933	1.2575418	3.3630844
С	-3.1852521	0.6455022	-2.3430309
Н	-2.6671054	-0.3224268	-2.4086152
С	-2.2972985	2.8788099	-3.1209861
Н	-3.2253370	3.0270692	-3.6580471
С	-0.6769663	-0.2142437	3.9149543
Н	-0.9211491	-1.0902778	3.3290389
C	-4.4452660	3.8222515	1.3783843
Ĥ	-5.2923738	4.4768053	1.2110574
C	-4 4896733	2 8554201	2 3759629
н	-5 3772702	2.0334201	2 9898596
C C	-0 5034989	2 1650659	4 1340253
н	-0 6070718	3 1537719	3 7011447
ſ	-0 1026159	3 6354540	-2 5599986
ц	0.6845547	4 3733095	-2 6560622
C II	-1 311/136	2 8/77888	-2.0500022
н	-1 /7/9777	4 7510077	-3 7710/25
C C	-4.0005475	0.6791107	-1 0/9/81/
н	-4 7212024	-0 1/25208	-1 033/175
Ц	-4.5510/05	1 6101736	_0 9738754
и Ц	-4.5510495	0.608204	-0.1524621
C II	-3.3844072	0.6008234	-2 5428600
L L	-4.1209007	-0.2026904	-2 5279101
Ц	-4.7595185	1 5545485	-3.5378101
и Ц	-4.7789395	0.6064214	-4 4910925
C II	-0.2501222	-0.3625708	-4.4019023 5 2200088
L L	-0.2591552	-1 25023708	5.2299088
П	-0.1083076	-1.5592708	5.0402115
	-0.0971024	2.0134155	5.4474014
П	0.1255521	2.8947110	6.0413894
	0.0510999	0.7463022	7 0228110
II Po	0.3498121	0.0321930	0 9226272
ы		0.4677657	0.020275
	1 4770406	-0.1898700	-0.9891403
	1.4779400	1 1970655	1 0821067
П	1.6401555	1.10/9033	-1.0851007
L II	1.5591029	2.8784087	0.2367770
п	2.3244003	2.0500502	0.7027881
п	1.4597625	3.9051332	0.1789339
П	0.7091555	2.5205049	0.9080529
U	2.0432041	2.7696469	-2.0082627
н	3.5880700	2.4418033	-1.5694197
н	2.6679643	3.8603906	-2.0565953
н	2.5914416	2.3800090	-3.0283/96
н	5.3989042	-4.5450227	-2.3452527
H	4./930//0	-0.7614530	2.043/040
н	4.5294356	0.9833566	1.923/942
н	3.883/884	1.1295390	4.35/0/3/
Н	4.2730158	-0.5784660	4.5202179

 $\label{eq:conditional} \textit{Table S42:} Coordinates of the optimizes structure of [(Ph_2N)BePh]2 in XZY Ångstrom format.$

х

atom

у

Z

Ν	-0.7307039	-0.1058673	-1.0551535
Ве	0.8058224	-0.5808247	-0.4876309
Н	0.8173417	-2.0652959	-2.9274371
С	1.7089038	-2.3091506	-2.3552072
Be	-0.8782206	0 3047206	0 5988809
C	2 6121879	-3 2131381	-2 8968383
н	2.0121075	-3 6516974	-3 8716084
н	3 2607397	-1 6882792	0 5795786
C C	3 0661890	-2.0980194	-0.4088301
C	0 8224727	-1 6517030	2 3801216
C C	1 1700564	-1.0517550	2.3801210
	1.1700304	-0.3102202	2.1033570
П	0.3203732	-2.1999147	2.5000201
L	1.1318984	-2.2935451	3.5055134
H	0.8544594	-3.3329808	3.6952650
L	1.7987518	-1.6164762	4.5768666
H	2.0425553	-2.1195182	5.5045507
C	2.1529130	-0.2909247	4.3825772
Н	2.6/62//4	0.2509558	5.1620210
C	1.8425325	0.3604030	3.1980251
Н	2.1196227	1.3979594	3.0601959
C	2.7123053	1.6363675	0.2222297
C	1.4030260	1.5857064	0.6916991
Н	3.2727557	0.7148379	0.1128624
C	3.2790040	2.8530213	-0.1197861
С	2.5435580	4.0243176	-0.0016407
Н	2.9846909	4.9735421	-0.2816780
С	1.2426513	3.9761310	0.4750801
Н	0.6621558	4.8858911	0.5709390
С	0.6764435	2.7618076	0.8323964
Н	-0.3380365	2.7206657	1.2172808
С	-2.2358249	0.4713955	1.6037075
С	-2.0957460	0.8467269	2.9471760
Н	-1.1014454	0.9933488	3.3616187
С	-3.1901447	1.0284412	3.7812882
Н	-3.0444424	1.3182532	4.8165418
С	-4.4728838	0.8328606	3.2899929
Н	-5.3319171	0.9705422	3.9375661
С	-4.6504434	0.4532957	1.9667806
Н	-5.6505972	0.2914654	1.5787921
С	-3.5462684	0.2774539	1.1451783
Н	-3.7146074	-0.0353999	0.1173185
С	-0.6843219	1.1313032	-1.7909938
С	-1.7430682	2.0308921	-1.7069962
Н	-2.6164866	1.7690751	-1.1205841
C	-1.6651300	3.2545144	-2.3512122
н	-2 4901751	3 9530589	-2 2750637
C C	-0 5309250	3 5910698	-3 0771979
н	-0.4670303	4 5539520	-3 5699893
C C	0.5202124	2 6018850	-3 1605878
	1 1096711	2.0310033	_2 72/07/C
п С	1.4000/14 0 4401022	2.9400383 1 /500171	-3./340/43 _1 52037/1
L L	U.44UI032 1 3EE0751	1.43301/1	-2.3303/42
	1.2009/01	0.7477140	-2.01/9/22
L C	-1.5521/6/	-1.1301006	-1.6012878
С	-2.0308663	-1.0864928	-2.9067698
H	-1.8051453	-0.2338026	-3.5346596
С	-2.7910064	-2.1346309	-3.4040818
H	-3.1554084	-2.0856761	-4.4238343

С	-3.0823177	-3.2360582	-2.6151891
Н	-3.6753350	-4.0521666	-3.0093769
С	-2.6089314	-3.2782898	-1.3113071
Н	-2.8338074	-4.1269544	-0.6761607
С	-1.8544056	-2.2346951	-0.8074183
Н	-1.5133642	-2.2665065	0.2224746
N	0.7865098	0.3142750	0.9700618
С	1.9067192	-1.7185624	-1.0992530
С	3.7520409	-3.5603221	-2.1860586
Н	4.4601573	-4.2683076	-2.6026799
С	3.9777767	-3.0016514	-0.9356996
Н	4.8633895	-3.2749099	-0.3717402
Н	4.2963358	2.8838777	-0.4919733

Table S43: Coordinates of the optimizes structure of 5 in XZY Ångstrom format.

atom	Х	У	Z
С	-4.2885329	3.3922331	-2.2182405
С	-3.2924726	4.0318976	-2.9518346
Н	-4.0198771	2.9487169	-1.2658615
С	-5.5869357	3.3379781	-2.6945848
Н	-6.3587626	2.8531722	-2.1070502
С	-5.9022647	3.9066238	-3.9228059
Н	-6.9172720	3.8579760	-4.3004419
С	-4.9157704	4.5441390	-4.6605998
Н	-5.1568867	4.9878575	-5.6200350
С	-3.6198449	4.6192959	-4.1703735
Н	-2.8497851	5.1247724	-4.7426276
С	-3.9990200	5.1922749	1.5064035
Н	-4.5649726	6.1167413	1.4973013
С	-4.5692502	4.0345050	2.0172796
Н	-5.5810232	4.0518072	2.4055691
С	-3.8432774	2.8543247	2.0346272
Н	-4.2826527	1.9504768	2.4418107
Н	-2.2003034	-5.8411317	3.6836767
С	-1.1552201	-5.6957716	3.9339128
С	-0.6482520	-6.2033775	5.1241621
С	0.6940059	-6.0331875	5.4296310
Н	-1.2980342	-6.7363955	5.8089184
Н	1.0935842	-6.4263175	6.3576862
С	-1.8913863	4.0110895	-2.4333274
Ν	-1.4422330	3.0136504	-1.8364608
С	-1.0476475	5.2244708	-2.6535797
С	0.3122496	5.0598764	-2.9044258
Н	0.7011839	4.0510010	-2.9861823
С	0.9283052	0.3747365	-2.5773621
Ν	0.2838404	0.6969343	-1.5343543
С	1.9038425	-0.7475943	-2.5755915
С	2.7239030	-0.9756383	-1.4730870
Н	2.6774621	-0.2980637	-0.6301413
С	3.5831900	-2.0609650	-1.4447598
Н	4.2088821	-2.2334578	-0.5772977
С	3.6226110	-2.9424004	-2.5167730
Н	4.2823449	-3.8018673	-2.4864878
С	2.8109193	-2.7239800	-3.6205088
Н	2.8327284	-3.4139882	-4.4560116
С	1.9675401	-1.6245211	-3.6569814

Н	1.3336127	-1.4516190	-4.5189824
С	0.7378089	1.0926828	-3.8649973
С	1.8376263	1.4673898	-4.6352384
Н	2.8342546	1.1825727	-4.3167665
С	1.6626040	2.2171152	-5.7873589
H	2 5248735	2 5251214	-6 3673372
C	0 3844504	2 5695138	-6 1982156
с Н	0 2470427	3 1521037	-7 1019335
ſ	-0 7163532	2 1714385	-5 4528065
с н	-1 7178221	2.1714505	-5 7709466
C .	-0 5400503	1 4/36861	_/ 2883105
		1 1420675	-2 6075054
	1 9076290	1.1429073	-3.0973934
L	-1.8070389	1.5292430	1.4374430
N	-1.158/448	1.1943032	0.4013040
l C	-2.5525996	2.8135196	1.5095387
C	-1.9864677	3.9803181	1.0059224
H	-0.9802838	3.9524438	0.6094353
C	-2.7026884	5.1650542	1.0117077
Н	-2.2485275	6.0667310	0.6171543
C	-1.8516101	0.6612604	2.6440345
C	-1.9172134	-0.7245716	2.5206609
Н	-1.9819800	-1.1653114	1.5340156
С	-1.8894248	-1.5354708	3.6426295
Н	-1.9309209	-2.6125638	3.5330621
С	-1.7810676	-0.9684847	4.9053317
С	-1.7161832	0.4108217	5.0396804
С	-1.7666979	1.2221615	3.9169650
Н	-1.7172337	2.2999955	4.0201640
С	-0.8394166	-2.4592957	-0.9404780
Ν	-0.2401536	-1.6868072	-0.1336146
С	-0.6174364	-3.9289088	-0.9240693
С	-1.6952072	-4.8084802	-1.0134252
Н	-2.6960630	-4.4141645	-1.1498592
С	-1.4940446	-6.1753279	-0.9068195
Н	-2.3403406	-6.8508991	-0.9531055
С	-0.2100344	-6.6769593	-0.7446251
н	-0.0519316	-7 7464974	-0.6663587
C	0.8703231	-5.8077766	-0.6873475
е Н	1 8765540	-6 1926607	-0 5675580
ſ	0 6667646	- <u>1 11</u> 020007	-0.768/605
с н	1 5051051	-2 7595718	_0.700+000 _0.7112700
	_1 7001/70	-3.7333240	-0.7113700 -1 0E01101
C	-1.7901470	-1.9578295	-1.9561121
L	-1.7933682	-2.4611425	-3.2498088
H	-1.1301360	-3.2836748	-3.4912806
L	-2.6144006	-1.9174692	-4.2253130
Н	-2.5893394	-2.3150190	-5.2332969
С	-3.4634723	-0.8653555	-3.9136544
Н	-4.1057420	-0.4388971	-4.6755268
С	-3.4837683	-0.3525939	-2.6235940
Н	-4.1380107	0.4755260	-2.3789596
С	-2.6470312	-0.8821958	-1.6557850
н	2 6472020	-0.4713291	-0.6542638
	-2.0472950		
C	1.7285957	0.5636990	2.0933820
C N	-2.0472930 1.7285957 1.1245843	0.5636990	2.0933820 1.2817675
C N C	1.7285957 1.1245843 2.4421540	0.5636990 -0.2001522 0.0302731	2.0933820 1.2817675 3.2831830
C N C C	-2.6472930 1.7285957 1.1245843 2.4421540 1.8711545	0.5636990 -0.2001522 0.0302731 -0.9838781	2.0933820 1.2817675 3.2831830 4.0454177

С	2.5616135	-1.5298352	5.1139627
С	3.8370520	-1.0781063	5.4223957
С	4.4113754	-0.0612766	4.6721503
Н	5.4067494	0.2952625	4.9106185
С	3.7104513	0.5022011	3.6179629
Н	4.1528770	1.3029200	3.0358215
С	1.7477777	2.0388464	1.9067241
С	1.8546734	2.5932029	0.6334828
Н	1.9705640	1.9383181	-0.2207010
С	1.8030798	3.9651747	0.4542653
Н	1.8777241	4.3842484	-0.5420494
С	1.6288840	4.8013794	1.5488305
H	1.5703555	5.8742415	1.4060779
C	1.5224444	4.2596948	2.8216194
Ĥ	1.3782482	4.9083746	3.6778221
C	1 5970769	2 8873743	3 0018882
ч Н	1 5150888	2 4623666	3 9956006
 C	1 8677171	-4 0282770	2 4305308
N	1 4042747	-3 0351298	1 8374925
C	1 0225374	-1 8332266	3 3632766
C	-0 3266913	-5 0069898	3.0650964
н	-0 7037795	-1 5967646	2 13/8605
C	1 5288200	-5 3630/17	4 5461216
L L	2 5802116	-5 2278755	4.3401210
	2.3802110	-3.2378733	2 2212161
C	3.2004230	-4.4320773	2.2313101
	4.2013035	-3.4741013	2.0331903
⊓ Do	0.8552102	-2.4359160	2.1234295
Be	-0.8553103	1.8241240	-1.1035925
ве	0.0027518	0.0020273	0.0050558
ве	0.8521243	-1.8277137	1.10/1930
н	-1.7413681	-1.6042303	5.7822863
н	-1.6236230	0.8571396	6.0230020
Н	2.1041622	-2.3190360	5.6995677
Н	4.3833652	-1.5158270	6.2500215
С	1.1372756	6.1609586	-3.0550219
Н	2.1913191	6.0217081	-3.2685721
С	0.6155672	7.4435016	-2.9358699
Н	1.2623926	8.3064753	-3.0459103
Н	-1.1487679	8.6149708	-2.5891640
С	-0.7374872	7.6162994	-2.6841405
C	-1.5680083	6.5118533	-2.5584931
Н	-2.6275855	6.6460544	-2.3706594
С	5.5762234	-3.8286875	1.8076257
Н	6.3309570	-3.0589139	1.6901422
С	5.9297826	-5.1692869	1.7124632
Н	6.9578034	-5.4479280	1.5106279
С	4.9645255	-6.1504092	1.8849380
Н	5.2354998	-7.1975471	1.8101759
С	3.6516307	-5.7939377	2.1580746
Н	2.8979496	-6.5603519	2.3014864

Table S44: Coordinates of the optimizes structure of H₂NMes in XZY Ångstrom format.

atom	х	у	Z
С	-0.5907469	1.0547203	-0.4155425
С	0.3766500	0.2368890	-1.0130539
С	-1.0582943	0.7295858	0.8496911

Н	-1.8057463	1.3730238	1.3056959
С	-0.6048695	-0.3833226	1.5459439
С	0.3536939	-1.1770327	0.9290761
Н	0.7316961	-2.0534797	1.4482878
С	0.8513721	-0.8927168	-0.3343434
С	-1.1050992	2.2577167	-1.1419006
Н	-0.3091895	2.9853153	-1.3437688
Н	-1.5463918	1.9863470	-2.1067299
Н	-1.8691474	2.7686584	-0.5559234
С	1.8793557	-1.7723114	-0.9737848
Н	2.1234667	-2.6170451	-0.3295420
Н	1.5283351	-2.1701272	-1.9317938
Ν	0.8215276	0.5128223	-2.3018392
Н	0.7343076	1.4739370	-2.5879695
Н	1.7242978	0.1326518	-2.5335681
С	-1.1515818	-0.7322335	2.8973758
Н	-0.4047947	-1.2433529	3.5085906
Н	-1.4750385	0.1599703	3.4374588
Н	-2.0178559	-1.3971951	2.8185721
Η	2.8140534	-1.2328206	-1.1709323

Table S45: Coordinates of the optimizes structure of pyridine in XZY Ångstrom format.

atom	Х	у	Z
С	0.000000	0.0000000	-1.1875644
С	-1.1905597	0.0000000	-0.4796224
С	-1.1347786	0.0000000	0.9066676
Ν	0.000000	0.0000000	1.5975498
С	1.1347786	0.0000000	0.9066676
С	1.1905597	0.000000	-0.4796224
Н	0.000000	0.0000000	-2.2716173
Н	-2.1474043	0.000000	-0.9875080
Н	-2.0507421	0.0000000	1.4912789
Н	2.0507421	0.0000000	1.4912789
Н	2.1474043	0.0000000	-0.9875080

Table S46: Coordinates of the optimizes structure of H₂NDipp in XZY Ångstrom format.

atom	Х	у	Z
С	0.0881083	-0.9773903	-0.7861065
С	0.3459025	0.1459708	0.0200729
С	-1.2110925	-1.4580539	-0.8634735
Н	-1.4197823	-2.3257524	-1.4772671
С	-2.2458794	-0.8568352	-0.1682254
Н	-3.2545111	-1.2450203	-0.2427437
С	-1.9773836	0.2444834	0.6258016
Н	-2.7884245	0.7134220	1.1688202
С	-0.6941281	0.7614620	0.7414439
С	-0.3955073	1.9357020	1.6461969
Н	0.2964177	2.6032484	1.1112639
С	-1.6126266	2.7832153	1.9855154
Н	-2.3164078	2.2370404	2.6185819
Н	-1.3040060	3.6726083	2.5395596
Н	-2.1431036	3.1068614	1.0876024
С	0.2965305	1.4692161	2.9289538
Н	1.1812485	0.8669963	2.7163048

Н	0.5969118	2.3220331	3.5438276
Н	-0.3909288	0.8539346	3.5150920
С	1.2161644	-1.6177494	-1.5630695
Н	2.1116689	-1.5731358	-0.9305088
С	1.4985833	-0.8416824	-2.8523253
Н	1.6599015	0.2241242	-2.6711623
Н	2.3790664	-1.2372158	-3.3658690
Н	0.6444244	-0.9239982	-3.5292698
С	0.9881685	-3.0881508	-1.8828034
Н	0.1761943	-3.2237197	-2.6016258
Н	1.8882927	-3.5175928	-2.3287589
Н	0.7457091	-3.6595518	-0.9847129
Ν	1.6518257	0.6098150	0.1511407
Н	1.7384529	1.5543739	0.4868238
Н	2.2502103	0.4413417	-0.6390796

Table S47: Coordinates of the optimizes structure of HNPh₂ in XZY Ångstrom format.

atom	Х	у	Z
N	0.9542560	0.2406909	0.4468964
Н	1.8498823	0.4444667	0.8545442
С	0.0800640	-0.4723655	1.2526772
С	-0.9399440	-1.2752307	0.7379673
Н	-1.0719572	-1.3589247	-0.3325314
С	-1.7604335	-1.9912633	1.5935265
Н	-2.5445687	-2.6107147	1.1728827
С	-1.5811212	-1.9399436	2.9678173
Н	-2.2264311	-2.5049774	3.6288818
С	-0.5560796	-1.1579855	3.4810763
Н	-0.3948666	-1.1063167	4.5518335
С	0.2601299	-0.4266580	2.6377939
Н	1.0474009	0.1970155	3.0492356
С	0.7733426	0.6891135	-0.8523816
С	-0.4868778	0.9607685	-1.3891777
Н	-1.3721166	0.8215303	-0.7829917
С	-0.6032845	1.4402240	-2.6830965
Н	-1.5909453	1.6469606	-3.0796826
С	0.5190792	1.6740713	-3.4637197
Н	0.4183659	2.0509774	-4.4739186
С	1.7735411	1.4241369	-2.9259175
Н	2.6645980	1.6038537	-3.5165872
С	1.9017712	0.9306927	-1.6403826
Η	2.8861953	0.7198782	-1.2347458

 $\textit{Table S48:} Coordinates of the optimizes structure of HNCPh_2 in XZY Ångstrom format.$

atom	х	У	Z
С	-0.3460482	1.1425810	-0.3318600
С	-0.8695221	-0.0782710	-1.0002754
С	-0.0126217	-1.1016142	-1.4004629
С	-0.5035741	-2.1989362	-2.0891626
С	-1.8596528	-2.2992547	-2.3653206
С	-2.7224333	-1.2926984	-1.9566577
С	-2.2289495	-0.1864429	-1.2842291
Ν	-0.6880315	2.3199197	-0.6796658
Н	-1.3266308	2.2836943	-1.4733718

Н	0.1754078	-2.9801788	-2.4105240
Н	-2.2441636	-3.1630920	-2.8948557
Н	-3.7843565	-1.3713981	-2.1584391
Н	-2.9036364	0.5964690	-0.9552143
С	0.6212357	0.9825879	0.7798567
С	0.6633571	-0.1793211	1.5474171
Н	-0.0118264	-0.9963132	1.3227543
С	1.5506322	-0.2898310	2.6070614
С	2.4126712	0.7546004	2.9027656
С	2.3781167	1.9159125	2.1407118
С	1.4859899	2.0314303	1.0905474
Н	1.0460232	-1.0266468	-1.1806773
Н	1.5672275	-1.1947143	3.2032956
Н	3.1119317	0.6653754	3.7262323
Н	3.0519763	2.7338077	2.3683552
Н	1.4368777	2.9323342	0.4917189