Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Efficient Hydrogenation of Ketones over Diaminophosphino Manganese Complex

Contents

I.	General information	2
II.	General procedure for the catalytic hydrogenation	3
III.	Synthetic details	4
IV.	X-ray crystallographic analysis	7
V.	Activity tests	9
VI.	NMR spectra	11
VII.	IR spectra	16
VIII.	EPR spectra	18
IX.	GC for Hydrogenation Products	19
X.	References	24

I. General information

Unless otherwise specified, all operations were conducted under a dry Ar or N₂ atmosphere by using glovebox techniques and standard Schlenk manipulations. Organic solvents including toluene, *n*-hexane and tetrahydrofuran (THF) were dried by refluxing with sodium/potassium benzophenone under N₂ prior to use. Ethanol, methanol, isopropanol, *n*-propanol and CH₂Cl₂ were distilled from CaH₂ and kept in the glovebox for use. Aminophosphine ligands were synthesized according to the procedure reported in the literatures^[1-2]. ¹H (400 MHz), ¹³C {¹H} (100 MHz), and ³¹P {¹H} (160 MHz) NMR spectra were measured on a Bruker AVIII-400 spectrometer. Infrared (IR) spectra were recorded using a Nicolet FT-IR 330 spectrometer. Elemental analysis was performed on a Thermo Quest Italia SPA EA 1110 instrument. HRMS (ESI) were measured on a Thermo scientific Q EXACTIVE mass spectrometry system. Crystallographic data for complex **1** was collected at 150 K on a STOE STADIVARI detector. EPR spectra were measured on CIQTEK EPR200M with continues-wave X band frequency.

II. General procedure for the catalytic hydrogenation

In the glovebox, the ketone substrate, manganese complex, KOMe, ethanol solvent, and dodecane (internal standard) were measured into a 25 mL quartz-lined stainless-steel autoclave (Anhui Kemi Machinery Technology Co., Ltd). After transferring the autoclave out of the glovebox, it was carefully pressurized and vented with hydrogen (5 bar) three times. Then, it was pressurized with hydrogen (20 bar) and heated at 100 °C for 6 hours. Afterwards, the autoclave was cooled to approximately 5 °C using an ice bath and slowly depressurized. The reaction solution was passed through a short silica column and then analyzed by gas chromatography (GC, SHANGHAI INSTRUMENT, 9310-VI) equipped with a KB-Wax column (30 m × 0.32 mm × 0.33 μ m) and a flame ionization detector (FID), N₂ as carrier gas (0.7 bar). The injector and detector temperature were 200 °C and 250 °C, respectively. Program used: 80 °C for 5 minutes and then ramped to 200 °C at 10 °C/min, and maintained for 10 minutes. The conversion of ketone substrates and the yield of alcohols were calculated using dodecane as the internal standard.

III. Synthetic details

Synthesis of manganese complex 1

In the glovebox, 0.14 g of $Mn(CO)_5Br$ (0.5 mmol) and 0.30 g of ethylidene-bridged PNNP ligand (0.5 mmol) were weighed into a 100 mL Schlenk flask containing approximately 40 mL of toluene. The flask was heated at 80 °C for 1 day under an inert atmosphere, during which a yellow precipitate gradually formed. After the reaction was complete and the flask was cooled to room temperature, the yellow solid of complex **1** was collected by filtration, washed with *n*-hexane (3 × 2 mL), and dried *in vacuo*. Yield: 0.33 g, 83%.

¹H NMR (400 MHz, CD₂Cl₂, 298 k, ppm): δ = 2.01 (t, ²*J*_{HH}=9.8 Hz, 2 H), 2.55 (br, 2 H), 3.38 (br, 2 H), 4.11 (d, ²*J*_{HH}=14.6 Hz, 2 H), 4.54 (d, ²*J*_{HH}=14.9 Hz, 2 H), 7.31 (br), 7.36-7.45 (m), 7.52 (d, ²*J*_{HH}=7.3 Hz), 7.56 (d, ²*J*_{HH}=7.9 Hz), 7.63 (d, ²*J*_{HH}=5.2 Hz), 7.72 (d, ²*J*_{HH}=7.4 Hz) (28 H, C₆*H*₄ and *Ph*).

³¹P{¹H} NMR (160 MHz, CD₂Cl₂, 298 k, ppm): δ = 59.76 (br).

¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 298 k, ppm): $\delta = 50.70$ (s, CH₂), 56.31 (s, CH₂), 125.35 (t, $J_{PC} = 9.5$ Hz), 128.89 (s), 129.25 (s), 130.04 (t, $J_{PC} = 9.0$ Hz), 130.56 (s), 131.11 (s), 131.89 (s), 132.51 (br), 132.66 (s), 133.38 (s), 135.29 (t, $J_{PC} = 16.7$ Hz), 136.40 (s), 140.58 (br) (*C*₆H₄ and *Ph*), 225.60 (br) (*C*O).

IR (Nujol mull, KBr, cm^{-1}): v = 1935, 1860.

Anal. Calcd (%) for MnC₄₂H₃₈N₂P₂O₂Br (M_r = 799.6): C 63.09, N 3.50, H 4.79; found: C 63.15, N 3.46, H 4.83.

HRMS (ESI) calcd for MnC₄₂H₃₈N₂P₂O₂⁺: 719.1789, found 719.1823.

Synthesis of manganese complex 2

In the glovebox, 0.14 g of $Mn(CO)_5Br$ (0.5 mmol) and 0.33 g of cyclohexylidene-bridged PNNP ligand (0.5 mmol) were weighed into a 100 mL Schlenk flask containing approximately 40 mL of toluene. The flask was heated at 80 °C for 1 day under an inert atmosphere, during which a yellow precipitate gradually formed. After the reaction was complete and the flask was cooled to room temperature, the light-yellow solid of complex **2** was collected by filtration, washed with *n*-hexane (3 × 2 mL), and dried *in vacuo*. Yield: 0.37 g, 87%.

¹H NMR (400 MHz, CD₂Cl₂, 298 k, ppm): δ = -0.25 (br, 2 H), 0.56 (br, 2 H), 1.46 (br, 2 H), 1.56 (br, 2 H), 1.86 (br, 2 H), 2.37 (br, 2 H), 4.00 (br, 2 H), 4.53 (br, 2 H), 7.12-7.18 (m), 7.24 (t, ²*J*_{HH} = 1.4 Hz), 7.40 (br), 7.43 (br), 7.54 (br), 7.75 (br) (28 H, C₆*H*₄ and *Ph*).

³¹P{¹H} NMR (160 MHz, CD₂Cl₂, 298 k, ppm): δ = 62.14 (br).

¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 298 k, ppm): δ = 13.88 (s), 23.93 (s), 30.83 (s), 60.67 (s) (CH and CH₂), 125.56 (t, J_{PC} = 14.0 Hz), 128.92 (t, J_{PC} = 4.0 Hz), 129.68 (s), 130.11 (t, J_{PC} = 13.8 Hz), 130.70 (s), 131.36 (s), 132.42 (t, J_{PC} = 9.4 Hz), 132.62 (s), 133.20 (s), 133.41 (s), 134.60 (t, J_{PC} = 19.5 Hz), 136.57 (s), 139.18 (t, J_{PC} = 7.5 Hz) (C_6H_4 and Ph), 226.54 (br) (CO). IR (Nujol mull, KBr, cm⁻¹): ν = 1935, 1860.

Anal. Calcd (%) for MnC₄₆H₄₄N₂P₂O₂Br (*M*_r = 853.6): C 64.72, N 3.28, H 5.20; found: C 64.86, N 3.34, H 5.08.

HRMS (ESI) calcd for MnC₄₆H₄₄N₂P₂O₂⁺: 773.2259, found 773.2230.

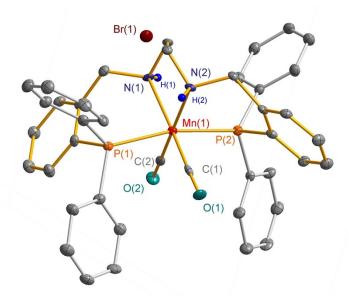
Synthesis of manganese complex 3

In the glovebox, 0.14 g of Mn(CO)₅Br (0.5 mmol) and 0.29 g of o-PPh₂C₆H₄CH₂NH₂ ligand (1.0 mmol) were weighed into a 100 mL Schlenk flask containing approximately 40 mL of toluene. The flask was heated at 80 °C for 1 day under an inert atmosphere, during which a yellow precipitate gradually formed. After the reaction was complete and the flask was cooled to room temperature, the yellow solid of complex **3** was collected by filtration, washed with *n*-hexane (3 × 2 mL), and dried *in vacuo*. Yield: 0.33 g, 86%.

¹H NMR (400 MHz, CD₂Cl₂, 298 k, ppm): $\delta = 1.80$ (br, 2 H), 3.63 (br, 2 H), 4.11 (br, 2 H), 4.84 (br, 2 H), 7.04 (br), 7.17 (br), 7.24 (br), 7.36 (br), 7.48 (br), 7.54 (br), 7.65 (br) (28 H, C₆H₄ and *Ph*).

³¹P{¹H} NMR (160 MHz, CD₂Cl₂, 298 k, ppm): δ = 59.47 (br).

¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 298 k, ppm): δ = 50.07 (t, J_{PC} = 6.0 Hz, CH_2), 128.03 (t, J_{PC} = 14.3 Hz), 129.02 (t, J_{PC} = 4.9 Hz), 129.18 (s), 130.07 (t, J_{PC} = 4.0 Hz), 130.30 (d, J_{PC} = 13.3 Hz), 130.87 (d, J_{PC} = 15.4 Hz), 131.43 (t, J_{PC} =3.1 Hz), 131.81 (s), 133.07 (t, J_{PC} = 4.5 Hz), 133.77 (d, J_{PC} = 23.7 Hz), 134.03 (t, J_{PC} = 4.4 Hz), 134.21 (s), 143.39 (t, J_{PC} = 7.9 Hz) (C_6H_4 and Ph), CO not observed.


IR (Nujol mull, KBr, cm^{-1}): v = 1932, 1857.

Anal. Calcd (%) for MnC₄₀H₃₆N₂P₂O₂Br (M_r = 773.5): C 62.11, N 3.62, H 4.69; found: C 62.33, N 3.69, H 4.53.

HRMS (ESI) calcd for $MnC_{40}H_{36}N_2P_2O_2^+$: 693.1633, found 693.1636.

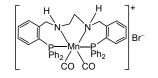
IV. X-ray crystallographic analysis

X-ray crystallographic analysis of complex 1: Crystallographic data for 1 was collected at 150 K on an Agilent Super Nova system using graphite-monochromated Cu- K_{α} radiation ($\lambda =$ 1.54186 Å). Intensity measurements were performed on a rapidly cooled crystal with dimensions of $0.15 \times 0.1 \times 0.08$ mm³ in the range $7.218^{\circ} < 2\theta < 125^{\circ}$. The data completeness collected was 98.8%. Absorption correction was applied using the spherical harmonic program (multi-scan type). The structure was solved by direct method (SHELXS-96)^[3] and refined against F² using SHELXL-97 program^[4]. In general, non-hydrogen atoms were located from different Fourier synthesis and refined anisotropically, and hydrogen atoms were included using a riding mode with U_{iso} tied to the U_{iso} of the parent atom unless otherwise specified. Crystal data for 1: $C_{42}H_{38}BrMnN_2O_2P_2$, $M_r = 799.53$, triclinic, space group P-1, a = 11.757(2), b = 11.757(2)17.831(3), c = 18.477(3) Å, $\alpha = 92.962(11)^\circ$, $\beta = 105.097(13)^\circ$, $\gamma = 90.746(13)^\circ$, V = 3733.4(10)Å³, Z = 4, $\rho_{\text{calcd}} = 1.422 \text{ g} \cdot \text{cm}^{-3}$, $\mu(\text{Cu}_{\text{K}\alpha}) = 5.241 \text{ mm}^{-1}$, F(000) = 1640; 228733 measured reflections, 11783 independent ($R_{int} = 0.0812$). The final refinements converged at $R_1 = 0.0756$ and $wR_2 = 0.1906$ for $I > 2\sigma(I)$ and $R_1 = 0.1294$ and $wR_2 = 0.2572$ for all data. The goodness of fit (GOF) is 1.037. Fourier synthesis gave a min/max residual electron density 1.44/-0.80 e Å³. CCDC-2375965 contains the supplementary crystallographic data. The data can be obtained of Cambridge Crystallographic free charge from the Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Figure S1 X-ray crystal structure of **1** with thermal ellipsoids at 30% probability level. Hydrogen atoms except H(1) and H(2) are omitted for clarity. Selected bond lengths [Å] and angles [°] for **1**: Mn(1)-P(1) 2.308(2), Mn(1)-P(2) 2.323(2), Mn(1)-N(1) 2.160(6), Mn(1)-N(2) 2.144(6), Mn(1)-C(1) 1.774(9), Mn(1)-C(2) 1.793(10), P(1)-Mn(1)-P(2) 166.96(9), N(1)-Mn(1)-N(2) 81.6(2), P(1)-Mn(1)-N(1) 88.63(18), N(2)-Mn(1)-P(1) 101.37(19), N(2)-Mn(1)-P(2) 89.01(19), C(2)-Mn(1)-P(1) 86.4(2), C(2)-Mn(1)-P(2) 85.6(3), C(2)-Mn(1)-N(1) 169.4(3), C(2)-Mn(1)-N(2) 90.0(3), C(1)-Mn(1)-P(1) 84.7(3), C(1)-Mn(1)-P(2) 86.1(3), C(1)-Mn(1)-N(1) 168.9(3), C(1)-Mn(1)-N (2) 89.9(3), C(1)-Mn(1)-C(2) 97.4(4).

	Table ST Trydrogenation of according the into 1-prenyternation by 1 and base.				
Entry	Base	Conv. / %	Yield / %		
1	NaOMe	78	78		
2	KOMe	99	99		
3	NaOEt	83	83		
4	KOEt	90	90		
5	t-BuONa	70	70		
6	t-BuOK	85	85		
7	KH	71	71		

V. Activity tests


 Table S1
 Hydrogenation of acetophenone into 1-phenylethanol by 1 and base.

Reaction conditions: 2.0 mmol acetophenone (1.0 mmol/mL EtOH solution), 0.1 mol% 1, 10.0 mol% base, 20 bar H_2 , 100 °C, 6 h. The conversion of acetophenone and the yield of 1-phenylethanol were analyzed by GC.

Entry	Solvent	Conv. / %	Yield / %
1	MeOH	13	13
2	EtOH	99	99
3	<i>n</i> -PrOH	68	68
4	<i>i</i> -PrOH	94	94
5	THF	9	9
6	2-Me-THF	5	5
7	Toluene	10	10
8	CH_2Cl_2	1	1

Table S2Hydrogenation of acetophenone into 1-phenylethanol by 1 in differentsolvent.

Reaction conditions: 2.0 mmol acetophenone, 2 mL solvent, 0.1 mol% **1**, 10.0 mol% KOMe, 20 bar H_2 , 100 °C, 6 h. The conversion of acetophenone and the yield of 1-phenylethanol were analyzed by GC.

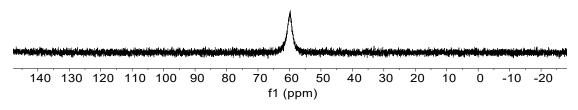


Figure S2 ${}^{31}P{}^{1}H$ NMR spectrum of 1 measured in CD₂Cl₂.

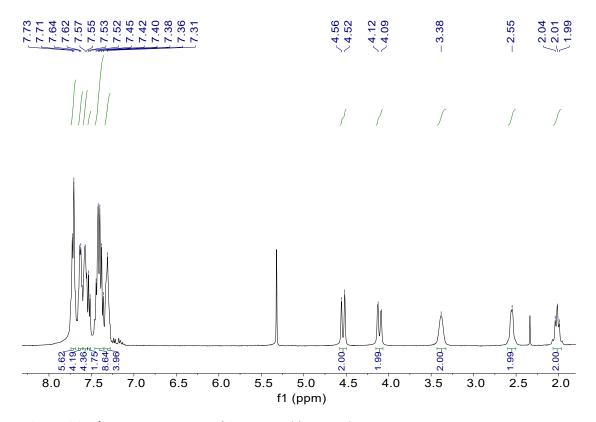
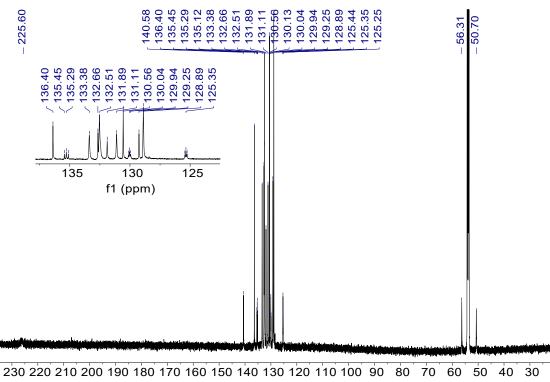



Figure S3 ¹H NMR spectrum of 1 measured in CD₂Cl₂.

f1 (ppm)

Figure S4 ${}^{13}C{}^{1}H$ NMR spectrum of 1 measured in CD₂Cl₂.

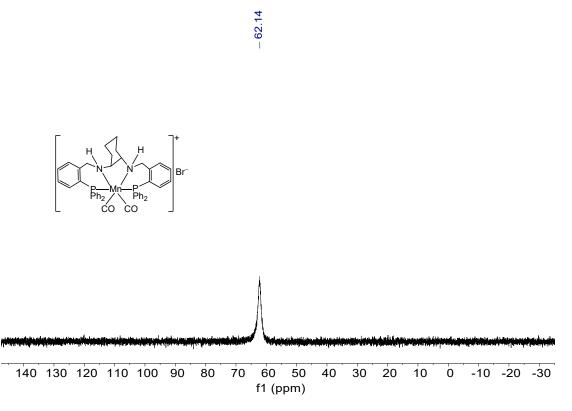


Figure S5 ${}^{31}P{}^{1}H$ NMR spectrum of 2 measured in CD₂Cl₂.

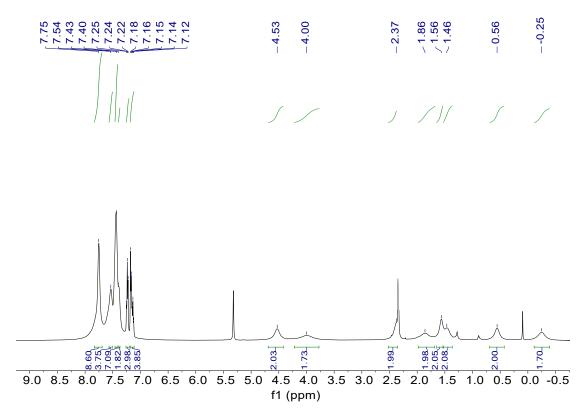


Figure S6 1 H NMR spectrum of 2 measured in CD₂Cl₂.

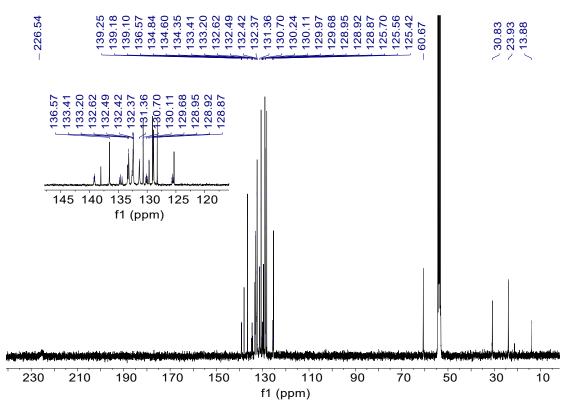
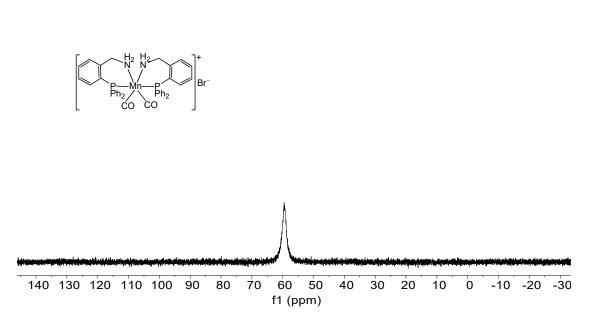
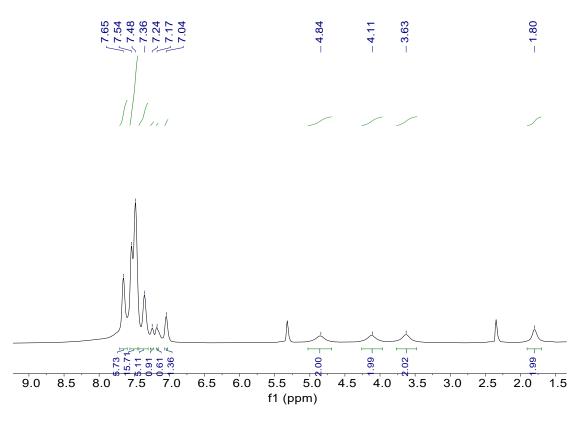




Figure S7 ${}^{13}C{}^{1}H$ NMR spectrum of 2 measured in CD_2Cl_2 .

- 59.47

Figure S8 ${}^{31}P{}^{1}H$ NMR spectrum of 3 measured in CD₂Cl₂.

Figure S9 ¹H NMR spectrum of **3** measured in CD_2Cl_2 .

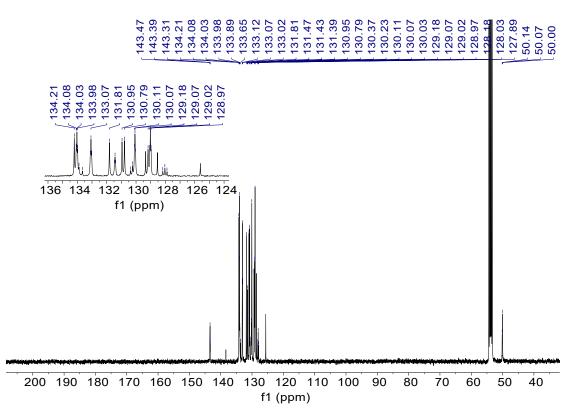


Figure S10 ${}^{13}C{}^{1}H$ NMR spectrum of 3 measured in CD₂Cl₂.

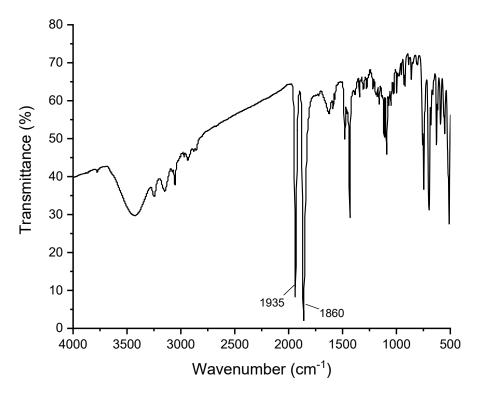


Figure S11 IR spectrum of complex 1.

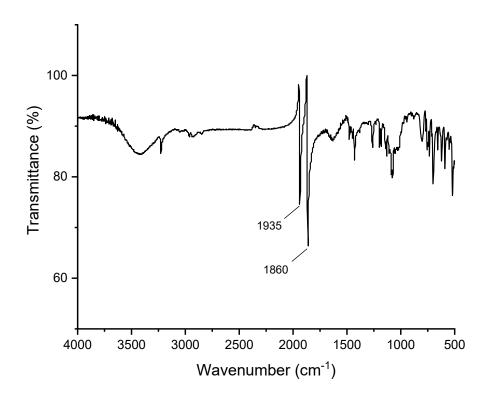


Figure S12 IR spectrum of complex 2.

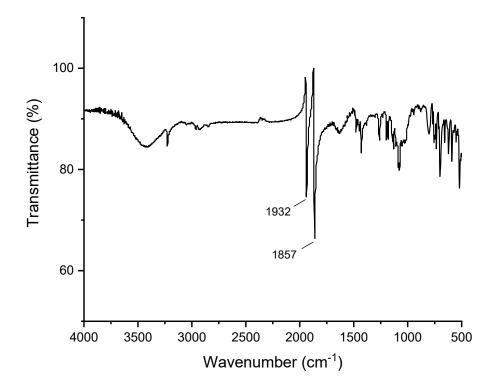


Figure S13 IR spectrum of complex 3.

VIII. EPR Spectra

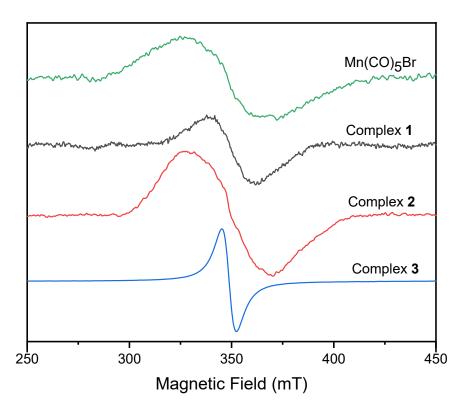
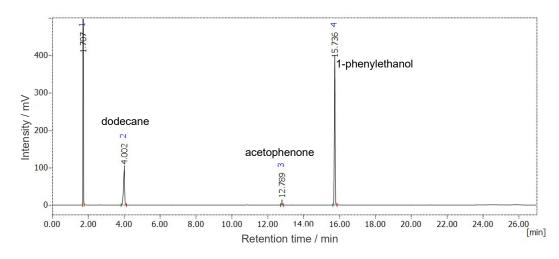
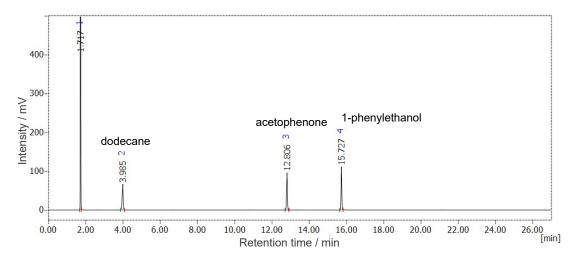
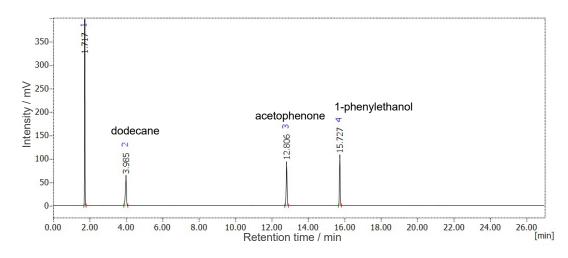
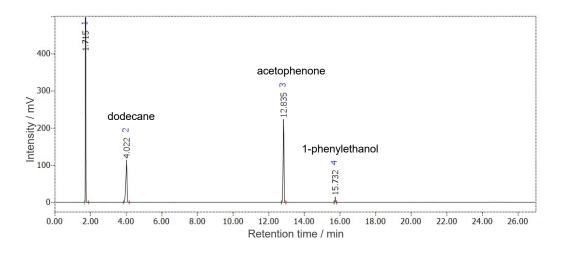
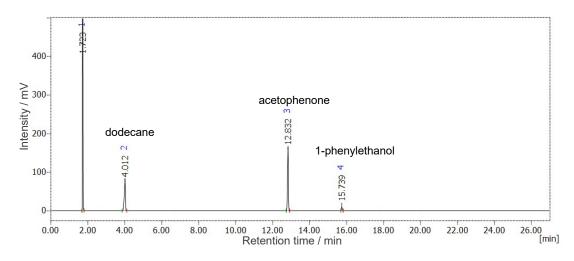




Figure S14 EPR spectra of Mn(CO)₅Br and manganese complexes 1-3.


IX. GC for Hydrogenation Products


Figure S15 GC analysis result for catalytic hydrogenation of acetophenone by **1** (Entry 1, Table 1).


Figure S16 GC analysis result for catalytic hydrogenation of acetophenone by **2** (Entry 2, Table 1).

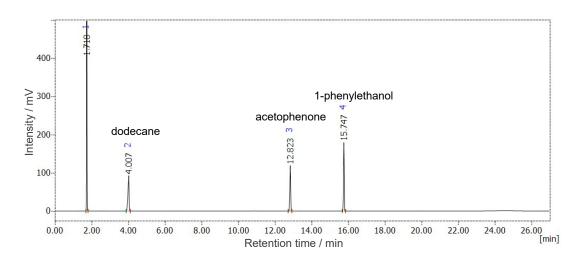

Figure S17 GC analysis result for catalytic hydrogenation of acetophenone by **3** (Entry 3, Table 1).

Figure S18 GC analysis result for catalytic hydrogenation of acetophenone by Mn(CO)₅Br (Entry 4, Table 1).

Figure S19 GC analysis result for catalytic hydrogenation of acetophenone by 1 (Entry 6, Table 1).

Figure S20 GC analysis result for catalytic hydrogenation of acetophenone by 1 (Entry 7, Table 1).

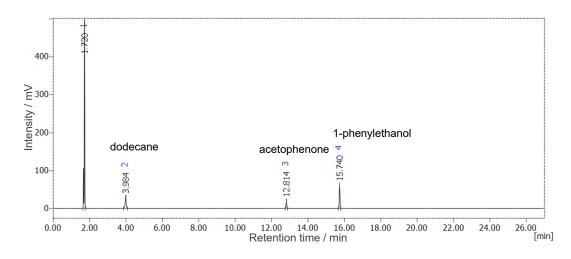


Figure S21GC analysis result for catalytic hydrogenation of acetophenone by 1 (Entry 8,Table 1).

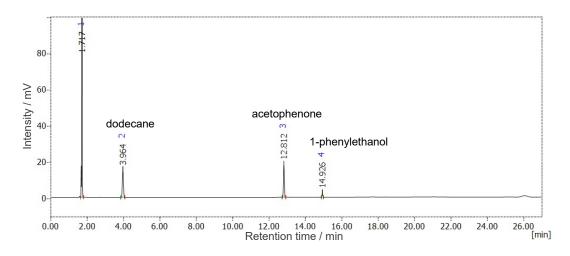


Figure S22GC analysis result for catalytic hydrogenation of acetophenone by 1 (Entry 9,Table 1).

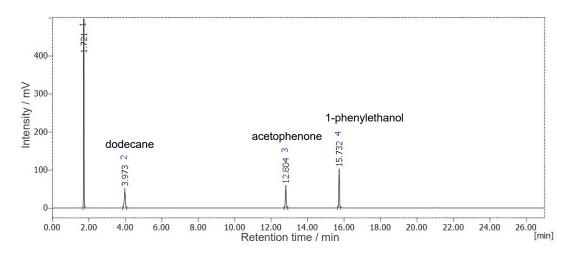


Figure S23GC analysis result for catalytic hydrogenation of acetophenone by 1 (Entry 12,Table 1).

X. References

- [1] M. Hingst; M. Tepper; O. Stelzer, Eur. J. Inorg. Chem. 1998, 1998, 73-82.
- [2] Y. Li; S. Yu; X. Wu; J. Xiao; W. Shen; Z. Dong; J. Gao, J. Am. Chem. Soc. 2014, 136, 4031-4039.
- [3] G. M. Sheldrick, SHELXS-90, Program for structure solution. *Acta Crystallogr. Sect. A* 1990, 46, 467-473.
- [4] G. M. Sheldrick, SHELXL-97, Program for crystal structure refinement. University of Göttingen: Göttingen, Germany, 1997.