Electronic Supplementary Information

Pb₆Ba₃Si₂S₈I₁₀: A new thiohalide with a quasi-two-dimensional

structure and wide band gap

Wang Zhao,^{a,b} Jiazheng Zhou,^a Linan Wang,^{a,b} Wenqi Jin,^{a,b} Yingying Kong,^a Yu Chu^{a,b*} and Junjie Li^{a,b*}

 ^aResearch Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China
^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese

Academy of Sciences, Beijing 100049, China

*Corresponding author: <u>chuy@ms.xjb.ac.cn</u> (Yu Chu), <u>lijunjie@ms.xjb.ac.cn</u> (Junjie Li)

CONTEXT

Table S1 Atomic coordinates ($\times 10^4$), equivalent isotropic displacement parameters (Å² × 10³) and bond valence calculations (BVSs) for Pb₆Ba₃Si₂S₈I₁₀.

Table S2 Bond lengths [Å] and angles [deg] for Pb₆Ba₃Si₂S₈I₁₀.

Table S3 Crystal systems, space groups, experimental band gaps and structural dimensions of known AM- and/or AEM-contained Pb-based thiohalides without C, H, O, N elements in ICSD.

Figure S1 The EDS spectrum and mappings of Pb₆Ba₃Si₂S₈I₁₀.

Figure S2 The distribution of Ba cations and I ions in the quasi-2D layers of $Pb_6Ba_3Si_2S_8I_{10}$.

Figure S3 The IR absorption spectrum of Pb₆Ba₃Si₂S₈I₁₀.

Figure S4 The Rietveld refinements of $Pb_6Ba_3Si_2S_8I_{10}$ based on the powder XRD pattern.

Figure S5 XRD patterns of $Pb_6Ba_3Si_2S_8I_{10}$ before and after heating at 1130 K.

Figure S6 Diffuse reflectance spectrum of $Pb_6Ba_3Si_2S_8I_{10}$ plotted as $[(kvF(R)]^{1/2}$ (indirect band gap), where F(R) is the Kubelka–Munk function. Dotted lines show the fit used to extract the band gap.

Figure S7 The RID measurement result of $Pb_6Ba_3Si_2S_8I_{10}$.

Atom	Wyckoff	x	У	Z	U(eq)	BVS ^[a]
Ba(1)	18 <i>e</i>	3333.33	3221.0(10)	4166.67	45.8(3)	2.31
Pb(1)	36 <i>f</i>	3447.7(6)	791.3(6)	4756.2(2)	43.02(17)	1.83
Si(1)	12 <i>c</i>	6666.67	3333.33	4474.7(6)	15.8(8)	3.94
S (1)	12 <i>c</i>	6666.67	3333.33	4779.4(5)	16.4(7)	2.12
S(2)	36 <i>f</i>	4603(3)	1297(3)	4381.9(3)	20.3(5)	2.15
I(1)	36 <i>f</i>	3267.0(8)	4112.2(9)	4749.3(2)	33.8(2)	0.95
I(2)	6 <i>b</i>	0	0	5000	19.1(3)	0.79
I(3)	6 <i>a</i>	3333.33	6666.67	4166.67	78.0(10)	0.80
I(4)	12 <i>c</i>	0	0	4436.8(2)	37.9(3)	0.79
GII ^[b]					0.178	

Table S1 Atomic coordinates (× 10⁴), equivalent isotropic displacement parameters $(Å^2 \times 10^3)$ and bond valence calculations (BVSs) for Pb₆Ba₃Si₂S₈I₁₀.

[a] The bond valence sum is calculated by bond-valence theory $(S_{ij} = \exp[(R_0 - R)/B]$, where *R* is an empirical constant, R_0 is the length of bond I (in angstroms), and B = 0.37).

[b] The global instability index (GII) calculated using:

$$G = \sqrt{\frac{\sum_{i=1}^{n} (BVS - v_i)}{N}}$$

where N is the number of atoms in the formula unit. The GII is calculated as 0.178 which is lower than 0.2 indicating the rationality of the structure from this side.

Pb(1)-I(1)	3.3443(9)	S(2)#2-Ba(1)-I(4)#3	81.45(4)
Pb(1)-I(2)	3.5138(5)	I(2)-Ba(1)-I(4)	114.051(15)
Ba(1)-S(2)	3.122(2)	I(2)-Ba(1)-I(4)#4	114.051(15)
Ba(1)-S(2)#1	3.122(3)	S(2)#5-Si(1)-S(1)	108.09(12)
Ba(1)-S(2)#2	3.266(2)	S(2)#2-Si(1)-S(1)	108.09(12)
Ba(1)-S(2)#3	3.266(2)	S(2)-Si(1)-S(1)	108.08(12)
Ba(1)-I(4)	3.7346(7)	S(2)-Si(1)-S(2)#5	110.82(12)
Ba(1)-I(4)#4	3.7345(7)	S(2)#5-Si(1)-S(2)	110.82(12)
Ba(1)-I(3)	3.3742(10)	S(2)-Si(1)-S(2)#2	110.82(12)
Si(1)-S(1)	2.152(5)	I(1)-Pb(1)-I(2)	73.110(16)
Pb(1)#5-S(1)	2.8832(6)	S(1)-Pb(1)-I(2)	132.67(5)
Pb(1)-S(1)	2.8832(6)	S(1)-Pb(1)-I(1)	74.207(17)
Pb(1)#3-S(1)	2.8832(6)	S(2)-Pb(1)-I(2)	139.01(5)
Si(1)-S(2)	2.112(3)	S(2)-Pb(1)-I(1)	91.56(5)
Pb(1)-S(2)	2.821(2)	S(2)-Pb(1)-S(1)	74.47(8)
S(2)#1-Ba(1)-S(2)	73.24(9)	S(2)#1-Ba(1)-I(4)	70.15(5)
S(2)-Ba(1)-S(2)#2	65.92(8)	S(2)#1-Ba(1)-I(3)	81.45(4)
S(2)#1-Ba(1)-S(2)#2	130.29(3)	S(2)-Ba(1)-I(3)	143.38(4)
S(2)#1-Ba(1)-S(2)#3	130.29(3)	S(2)#2-Ba(1)-I(3)	143.38(4)
S(2)#1-Ba(1)-S(2)#3	65.92(8)	S(2)-Ba(1)-I(4)#4	70.16(5)
S(2)#2-Ba(1)-S(2)#3	162.89(9)	S(2)#3-Ba(1)-I(4)	68.76(4)
S(2)#2-Ba(1)-I(4)	118.91(4)	S(2)#1-Ba(1)-I(4)#4	71.66(5)
S(2)#2-Ba(1)-I(4)#4	68.76(4)	S(2)#3-Ba(1)-I(4)#4	118.91(4)
S(2)-Ba(1)-I(4)	71.65(5)		

Table S2 Bond lengths [Å] and angles [deg] for $Pb_6Ba_3Si_2S_8I_{10}$.

Symmetry transformations used to generate equivalent atoms:

#1 2/3-x,1/3-x+y,5/6-z #2 1+y-x,1-x,+z #3 -1/3-y+x,1/3-y,5/6-z #4 2/3+y,1/3+x,5/6-z #5 1-y,+x-y,+z #6 -y,+x-y,+z #7 +y-x,-x,+z #8 1-y,1+x-y,+z #9 +y-x,1-x,+z

Compounds	Crystal system, space group	$E_{g}(eV)$	Structural dimension	Ref.					
$Pb_5Sn_3Se_{10}Cl_2$	orthorhombic, Cmmm	1.44	3D	[1]					
$Pb_5Sn_3S_{10}Cl_2$	orthorhombic, Cmmm	1.72	3D	[1]					
$Pb_3Se_2Br_2$	cubic, $I^{\overline{4}}3d$	1.48	3D	[2]					
$Pb_5S_2I_6$	monoclinic, C2/m	1.73	3D	[3]					
$Pb_4S_3I_2$	orthorhombic, Pnma	1.76	3D	[4]					
$Pb_4S_3Br_2$	orthorhombic, Pnma	1.91	3D	[4]					
$Pb_3S_3Cl_2$	cubic, $I^{\overline{4}}3d$	2.02	3D	[4]					
Pb ₃ SBrI ₃	monoclinic, $P2_1/m$	2.16	3D	[5]					
$Pb_2SbS_2I_3$	orthorhombic, Cmmm	2.19	3D	[6]					
$[K_2PbI][Ga_7S_{12}]$	orthorhombic, Imm2	2.41	3D	[7]					
[K ₂ PbBr][Ga ₇ S ₁₂]	orthorhombic, Imm2	2.49	3D	[7]					
$[K_2PbCl][Ga_7S_{12}]$	orthorhombic, Imm2	2.54	3D	[7]					
[Na ₂ PbI][Ga ₇ S ₁₂]	orthorhombic, Imm2	2.53	3D	[8]					
$Pb_{3.5}GeS_4Br_3$	hexagonal, P6 ₃	2.6	3D	[9]					
Pb ₄ SeBr ₆	orthorhombic, Imm2	2.62	3D	[10]					
$Pb_6Ba_3Si_2S_8I_{10}\\$	trigonal, $R^{3}c$	2.80	2D	This work					

Table S3 Crystal systems, space groups, experimental band gaps and structuraldimensions of known AM- and/or AEM-contained Pb-based thiohalides without C, H,

O, N elements in ICSD.

Figure S1 The EDS spectrum and mappings of $Pb_6Ba_3Si_2S_8I_{10}$.

Figure S2 The distribution of Ba and I atoms in the quasi-2D layers of $Pb_6Ba_3Si_2S_8I_{10}$.

Figure S3 The IR absorption spectrum of $Pb_6Ba_3Si_2S_8I_{10}$.

Figure S4 The Rietveld refinements of $Pb_6Ba_3Si_2S_8I_{10}$ based on the powder XRD pattern.

Figure S5 XRD patterns of Pb₆Ba₃Si₂S₈I₁₀ before and after heating at 1130 K.

Figure S6 Diffuse reflectance spectrum of $Pb_6Ba_3Si_2S_8I_{10}$ plotted as $[(kvF(R)]^{1/2}$ (indirect band gap), where F(R) is the Kubelka-Munk function. Dotted lines show the fit used to extract the band gap.

Figure S7 The RID measurement result of $Pb_6Ba_3Si_2S_8I_{10}$.

References

 L.-T. Jiang, M.-Z. Li, X.-M. Jiang, B.-W. Liu and G.-C. Guo, *Dalton Trans.*, 2022, **51**, 6638-6645.

[2] D. Ni, S. Guo, K. M. Powderly, R. Zhong and R. J. Cava, *J. Solid State Chem.*, 2019, 280, 120982.

[3] H. Wang, G. Chen, J. Xu, Y. Xu and Q. Yang, *Cryst. Growth Des.*, 2018, **18**, 1987-1994.

[4] S. Toso, Q. A. Akkerman, B. Martín-García, M. Prato, J. Zito, I. Infante, Z. Dang,

A. Moliterni, C. Giannini, E. Bladt, I. Lobato, J. Ramade, S. Bals, J. Buha, D. Spirito,

E. Mugnaioli, M. Gemmi and L. Manna, J. Am. Chem. Soc., 2020, 142, 10198–10211.

[5] M. Yan, R.-L. Tang, W. Zhou, W. Liu and S.-P. Guo, *Dalton Trans.*, 2022, 51, 12921-12927.

[6] R. Nie, B. Kim, S.-T. Hong and S. I. Seok, ACS Energy Lett., 2018, 3, 2376-2382.

[7] W.-F. Chen, B.-W. Liu, S.-M. Pei, X.-M. Jiang and G.-C. Guo, *Adv. Sci.*, 2023, 10, 2207630.

[8] Z.-X. Wu, W.-F. Chen, X.-M. Jiang, B.-W. Liu and G.-C. Guo, *Chem. Mater.*, 2024, 36, 3444-3451.

[9] J. Zhou, H. Wang, J. Liu, X. Su, Y. Chu, J. Qu and X. Jiang, *Inorg. Chem. Front.*, 2024, 11, 2681-2689.

[10] J. Wang, H. Wu, H. Yu, Z. Hu, J. Wang and Y. Wu, *Adv. Opt. Mater.*, 2022, 10, 2102673.