Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Fabrication of 2D/2D $Bi_2MoO_6/S_x@g-C_3N_{(4-y)}$ type-II heterojunction photocatalyst for enhanced visible-light-mediated degradation of tetracycline in wastewater

Soorya K K^{*a*}, Adarsh Singh^{*a*}, Suneel Kumar Srivastava^{*b* δ^*}, Animesh Bhattacharya^{*c*}, Amit Bhatnagar^{*d*}, Ashok Kumar Gupta^{*a**}

^a Environmental Engineering Division, Department of Civil Engineering,

Indian Institute of Technology Kharagpur, Kharagpur 721302, India

^b Department of Chemistry,

Indian Institute of Technology Kharagpur, Kharagpur 721302, India

^c School of Environmental Science and Engineering,

Indian Institute of Technology Kharagpur, Kharagpur 721302, India

^d Department of Separation Science, LUT School of Engineering Science,

LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland

* Corresponding author.

E-mail address: agupta@civil.iitkgp.ac.in (A. K. Gupta).

E-mail address: suneelchemkgp@gmail.com (⁸S. K. Srivastava, former faculty, IIT Kharagpur).

Section S1 Thermogravimetric analysis (TGA) of BS_xN_y (II)

About 1.47% weight loss is observed on heating BS_xN_y (II) in the temperature range of 30°-810 °C. Reportedly, pristine Bi_2MoO_6 exhibited stability up to 800°C with minor weight loss.¹ In contrast, rapid decomposition is observed in the thermogram of $g-C_3N_4$ at around 600°C.² It is noted that the weight loss profile in the thermogram of BS_xN_y (II) can be divided into three stages. The first step (25-200°C) comprises the weight loss attributed to the expulsion of adsorbed water from the BS_xN_y (II). Subsequent weight loss in TGA occurs in the range of 200 °C - 500°C due to the initiation of S loss from $S_x@g-C_3N_{(4-y)}$.³ The significant weight loss in the final step at around 600°C could possibly be due to the decomposition of $S_x@g-C_3N_{(4-y)}$ in the heterojunction.

Section S2 Synthesis of pristine g-C₃N₄

Pristine $g-C_3N_4$ was synthesized using a previously reported method.⁴ In a typical synthesis procedure, 10 g of melamine was calcined in a muffle furnace at a temperature of 550°C for 4 h with a heating rate of 20°C/min. The resulting yellow product was then crushed into fine powder after cooling to ambient temperature.

Section S3 Effect of cations on photocatalytic degradation efficiency of tetracycline (TCL)

The Fe³⁺ ions in the reaction mixture showcased an inhibitory effect on photocatalytic degradation of TCL, decreasing degradation efficiency to 84.7%. This can be due to the conversion of Fe³⁺ to Fe^{(OH) $\frac{1}{2}$}, which tend to absorb a part of incident photons.⁵ On the contrary, the complex formed due to the interaction between Ca²⁺ and TCL reportedly increases light absorption, as reflected by the negligible decrease in degradation efficiency.^{6,7}

Fig. S1 XRD pattern of (a) $g-C_3N_4$ (JCPDS card no. - 01-087-1526), (b) Bi_2MoO_6 (JCPDS card no. - 01-076-2388) from standard atlas card for crystal planes.

ISO 25178						
Height F	Parameters					
Sq	1.02	nm	Root mean square height			
Ssk	1.35		Skewness			
Sku	16.1		Kurtosis			
Sp	18.3	nm	Maximum peak height			
Sv	4.01	nm	Maximum pit height			
Sz	22.3	nm	Maximum height			
Sa	0.774	nm	Arithmetic mean height			

Fig. S2 Height parameters of $BS_xN_y(II)$ composite.

Fig. S3 FEG-SEM images depicting particle size of Bi₂MoO₆.

Fig. S4 FEG-SEM images depicting particle size of $S_x@g-C_3N_{(4-y)}$.

Fig. S5 (a) XPS survey scan of $S_x@g-C_3N_{(4-y)}$, high-resolution spectra of (b) C 1s, (c) N 1s, (d) S 2p, (e) XPS survey scan of Bi₂MoO₆, high-resolution spectra of (f) Bi 4f, (g) Mo 3d, and (h) O 1s.

Fig. S6 (a) UV-Vis DRS spectra, and (b) Tauc plot of $g-C_3N_4$ synthesized using melamine as briefed in section S2.

Fig. S7 Thermogravimetric analysis (TGA) curve of $BS_xN_y(II)$ composite.

Fig. S8 Pseudo-first-order degradation kinetics plots for tetracycline (TCL) degradation using BS_xN_y.

Fig. S9 Influence of cations on the photocatalytic degradation of TCL.

Fig. S10 XRD pattern of (a) fresh BS_xN_y (II), and (b) recycled BS_xN_y (II).

Fig. S11 (a) FEG-SEM image, and (b) EDS spectra of $BS_xN_y(II)$ after reusability study.

Fig. S12 EPR spectra of (a) DMPO- $0^{\circ}2^{\circ}$, and (b) DMPO- 0° oH radicals.

Fig. S13 LC-MS chromatograph displaying identified transformation products (TPs) of TCL.

S. No.	Chemical	Source
1	Ammonium molybdate tetrahydrate ((NH ₄) ₆ Mo ₇ O ₂₄ .4H ₂ O)	Merck, India
2	Bismuth nitrate pentahydrate ($Bi(NO_3)_3 \cdot 5H_2O$)	Merck, India
3	Thiourea (CH_4N_2S)	Merck, India
4	Ethylene glycol ($C_2H_6O_2$)	Merck, India
5	Ethanol (C_2H_5OH)	Merck, India
6	Tetracycline ($C_{22}H_{24}N_2O_8$)	Sigma-Aldrich

Table S1 Detailed information on the chemicals used in this work.

Table S2 Instruments used in the characterization and analysis.

S. No.	Characterization and analysis	Company	Purpose
	technique		
1	X-ray diffraction (XRD) analysis	D2 Phaser, Bruker, USA	To analyze the crystal
			structure
2	Fourier-transform infrared spectroscopy	Bruker Alpha II	To identify functional
	(FTIR)		groups and chemical
			composition
3	Field emission gun scanning electron	Zeiss Merlin Gemini II,	To observe the surface
	microscopy (FEG-SEM)	Germany	morphology and elemental
	Energy dispersive X-ray spectroscopy		composition
	(EDS)		
4	Atomic force microscopy (AFM)	Agilent 5500 Atomic Force	To characterize surface
		Microscope	topography
5	X-ray Photoelectron Spectroscopy	PHI 5000 VersaProbe III,	To analyze surface
	(XPS)	ULVAC PHI Inc., USA	chemistry
6	UV-Vis diffuse reflectance	Cary 5000 UV-Vis-NIR	To study the optical
	spectroscopy	spectrophotometer	properties
7	Inductively coupled plasma optical	iCAP PRO, Thermo Scientific,	To determine metal
	emission spectroscopy (ICP-OES)	USA	leaching
8	Thermo-gravimetric and Differential	Perkin Elmer Pyris Diamond	To investigate thermal
	Thermal Analysis (TGA-DTA)		stability and decomposition
0	T'	October TM ADL W. A.	Kinetics
9	Liquid chromatography-mass	Quattro micro I M API, waters,	To analyze transformation
	spectrometry (LC-MS)	USA	products
10	Spectrophotometer	Cary 60 UV-Vis	To measure aliquot
		Spectrophotometer	concentration
11	CHNS-O analyzer	Euro EA CHNSO Analyzer	To evaluate the chemical
			composition
12	High-resolution transmission electron	JEOL (JEM-ARM300F2)	To perform high-resolution
	microscopy (HRTEM)	(Double Aberration-corrected	imaging and elemental
		300 kV HRTEM)	mapping of the catalyst.
13	Pulsed Electron paramagnetic resonance	Bruker (ELEXSYS 580)	To identify active species
	(EPR) Spectrometer (X-band)		facilitating photocatalytic
			degradation.

Table S3 CHNS-O analysis of $S@g-C_3N_4$ and $S_x@g-C_3N_{(4-y)}$.

Material	C (wt. %)	N (wt. %)	H (wt.%)	S, O (wt.%)
S@g-C ₃ N ₄	31.65	61.32	1.76	5.27
S _x @g-C ₃ N _(4-y)	31.72	59.83	1.42	7.02

Table S4 Binding energy peaks from XPS spectra (Fig. S4), and associated assignments from literature.

S. No.	Photocatalyst	Element	Binding energy (eV) Assignments		nments	References
1	Bi ₂ MoO ₆	Bi 4f	163.09 eV	Bi 4f _{5/2}	D:3+	8.9
			157.78 eV	Bi 4f _{7/2}	DI	0,7
		O 1s	528.62 eV	Bi-O-Bi		10.11
			529.88 eV	Mo-O		10,11
		Mo 3d	231.03 eV	Mo 3d _{5/2}		12
			234.17 eV	Mo 3d _{3/2}		
2	$S_x@g-C_3N_{(4-y)}$	C 1s	283.15 eV	C=C		
			284.60 eV	C-C		13–15
			287.45 eV	N-C=N		
		N 1s	396.95 eV	C-N		
			397.96 eV	C-N=C 1		16–18
			399.41 eV	N-(C ₃)		
		S 2p	166.57 eV	S 2p _{3/2}		19
			167.89 eV	S 2p _{1/2}		

Table S5 Pseudo-first order rate constants for photocatalytic degradation of TCL in different reaction conditions.

Parameters	Reaction Conditions	k (min ⁻¹)	R ²
Photocatalysts	$S_x@g-C_3N_{(4-y)}$	0.00791	0.92599
	Bi ₂ MoO ₆	0.01128	0.96713
	$BS_xN_y(I)$	0.01802	0.95375
	BS _x N _y (II)	0.03844	0.98899
	BS _x N _y (III)	0.02741	0.99402
$BS_xN_y(II)$ dose (g/L)	0.1 g/L	0.01702	0.96792
	0.25 g/L	0.0257	0.99208
	0.5 g/L	0.03844	0.98899
	1 g/L	0.0336	0.98736
Initial TCL concentration (mg/L)	5 mg/L	0.0361	0.98194
	10 mg/L	0.03844	0.98899

	15 mg/L	0.03316	0.9932
	20 mg/L	0.02818	0.99132
pH	2	0.02345	0.98028
	4	0.0302	0.99451
	6	0.03844	0.98899
	8	0.01907	0.98341
	10	0.01682	0.99735

Table S6 Comparison of photocatalytic performance of Bi_2MoO_6 and $g-C_3N_4$ based catalysts for TCL degradation.

Photocatalyst	Light	Initial TCL	Catalyst	pH	Degradation	Mechanism	References
	source	concentration	dosage		efficiency		
10%-CuBi ₂ O ₄ /	300 W				72.8% (60	Type II	
BioMoO	xenon	20 mg/L	0.3 g/L	-	min)		20
D1210006	lamp						
SnS /	300 W					Z-Scheme	
$\mathbf{D}: \mathbf{M}_{\mathbf{n}}$	xenon	20 mg/L	0.3 g/L	6	89% (90 min)		21
D121VIOU6-x	lamp						
$150/\sim C N/$	500 W					Z-Scheme	
15% g-C ₃ N ₄ /	tungsten	20	0.25 . /I		0.00/(0.00)		22
$B_{12}WOO_{6}$	halogen	30 mg/L	0.23 g/L	-	98% (90 min)		22
$B_{12}WO_6$	lamp						
	300 W				07.50/ (120	Type II	
$B_{12}MOU_6/$	xenon	10 mg/L	1 g/L	5	97.5% (120	• •	23
$g-C_3N_4$	lamp				min)		
D'OC1/	350 W				07.000/ (100	Type II	
BiOCI/	xenon	10 mg/L	1 g/L	7	97.23% (100		24
$B_{12}MOO_6$	lamp				min)		
ZrO ₂ modified	300 W				72.00/ (1.50	Type II	
S-doped	xenon	40 mg/L	0.6 g/L	8.5	/2.2% (150		25
$g-C_3N_4$	lamp				min)		
N defect	50 W				700/ (120	-	
engineered	LED	20 mg/L	1 g/L	4.7	/8% (120		26
g-C ₃ N ₄	lamp				mın)		
	50 W				00.40/ //0	Type II	
$BS_{x}N_{y}(II)$	LED	10 mg/L	0.5 g/L	6	92.4% (60	~ 1	This study
	lamp		6		min)		

Table S7 Water quality parameters for different water matrices.

Parameters	DI water	Tap water	Municipal wastewater
рН	6.7±0.2	7.1±0.3	6.9±0.2
Turbidity (NTU)	-	2.1±0.8	52.8±3.1
TSS (mg/L)	-	-	352±8
Chloride (Cl^- , mg/L)	-	0.7±1.9	39.4±5.4

Bicarbonate ($^{HCO_{3}}$, mg/L)	-	18.4±3.5	102.4±3.5
Sulfate $({}^{SO_4^2}, mg/L)$	-	1.6±0.8	28.3±4.7
Nitrate ($^{NO_{3}}$, mg/L)	-	-	49±0.8
Phosphate $(PO_4^{3-}, mg/L)$	-	-	22.6±0.4
COD (mg/L)	_	_	166±13 (spiked with 10
			mg/L TCL)
TCL (mg/L)	10 (spiked)	10 (spiked)	10 (spiked)

Table S8 Transformation products (TPs) of TCL identified from LC-MS (Source: Fig. S13).

Parent compound/TPs	m/z	Structure
TCL	444.47	
TP1	231.71	
TP2	214.75	
TP3	130.72	HOOH OH

REFERENCES

- 1 M. Waqar, M. Imran, S. F. Adil, S. Noreen, S. Latif, M. Khan and M. R. H. Siddiqui, *Materials*, 2019, **13**, 35.
- 2 E. Vesali-Kermani, A. Habibi-Yangjeh, H. Diarmand-Khalilabad and S. Ghosh, *Journal of Colloid and Interface Science*, 2020, **563**, 81–91.
- 3 S. Vinoth, K. Subramani, W.-J. Ong, M. Sathish and A. Pandikumar, *Journal of Colloid and Interface Science*, 2021, **584**, 204–215.
- 4 S. R. Mishra, V. Gadore and M. Ahmaruzzaman, *International Journal of Environmental Analytical Chemistry*, 2023, 1–18.
- 5 D. Luo, P. Zhu, M. Duan, M. Liu, H. Lu and Z. Huang, *Separation and Purification Technology*, 2023, **311**, 123287.
- 6 S. Li, Y. He, F. Kong, W. Sun and J. Hu, *Water*, 2020, **12**, 2078.
- J. F. Leal, V. I. Esteves and E. B. H. Santos, *Journal of Photochemistry and Photobiology A: Chemistry*, 2019, **372**, 218–225.
- 8 N. A. M. Saeed, E. Coetsee, R. E. Kroon, M. Bettinelli and H. C. Swart, *Optical Materials*, 2021, **119**, 111291.
- 9 P. Xiao, C. Shen, Y. Li, S. Cui, S. Chen and J. Yang, *Journal of the Taiwan Institute of Chemical Engineers*, 2024, **162**, 105611.
- 10 C. Pan, Z. Wang, Y. Lou, Y. Zhang, Y. Dong and Y. Zhu, *Journal of Materials Chemistry A*, 2021, 9, 3616–3627.
- 11 Z. Yang, Q. Lin, G. Zeng, S. Zhao, G. Yan, M. B. M. Y. Ang, Y.-H. Chiao and S. Pu, *Journal of Membrane Science*, 2023, **669**, 121329.
- 12 M. Lathika Divya, Y.-S. Lee and V. Aravindan, *Physical Review Applied*, 2023, **19**, 034016.
- 13 V. Hasija, P. Singh, S. Thakur, V.-H. Nguyen, Q. Van Le, T. Ahamad, S. M. Alshehri, P. Raizada, B. M. Matsagar and K. C.-W. Wu, *Chemosphere*, 2023, **320**, 138015.
- 14 P. Ke, D. Zeng, J. Cui, X. Li and Y. Chen, *Catalysts*, 2022, **12**, 247.
- 15 E. Arulkumar and S. Thanikaikarasan, *Diamond and Related Materials*, 2024, 147, 111294.
- 16 M. Momina and K. Ahmad, International Journal of Biological Macromolecules, 2024, 263, 130253.
- 17 C. Wang, C. Yang, J. Qin, S. Rajendran and X. Zhang, *Materials Chemistry and Physics*, 2022, **275**, 125299.
- 18 Z. Zhao, X. Wang, Z. Shu, J. Zhou, T. Li, W. Wang and Y. Tan, *Applied Surface Science*, 2018, 455, 591–598.
- 19 M. A. Cotarelo, F. Huerta, C. Quijada, J. M. Pérez, M. A. del Valle and J. L. Vázquez, *Journal of The Electrochemical Society*, 2006, **153**, A2071.
- 20 W. Shi, M. Li, X. Huang, H. Ren, F. Guo, Y. Tang and C. Lu, *Chemical Engineering Journal*, 2020, **394**, 125009.
- 21 X. Zou, B. Sun, L. Wang, H. Bai, X. Meng, C. Li and Z. Li, *Chemical Engineering Journal*, 2024, **482**, 148818.
- H. Sun, C. Zou and W. Tang, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130105.

- 23 S. Wu, B. Yi and D. Lan, *Journal of Photochemistry and Photobiology A: Chemistry*, 2023, 444, 115013.
- 24 Y. Qiu, J. Lu, Y. Yan, J. Niu and Y. Duan, *Surfaces and Interfaces*, 2022, **31**, 102009.
- 25 A. M. Asiri, A. Raza, M. K. Shahzad, M. M. Fadhali, S. B. Khan, K. A. Alamry, S. Y. Alfifi and H. M. Marwani, *Journal of Photochemistry and Photobiology A: Chemistry*, 2023, **438**, 114486.
- 26 U. Ghosh, A. Majumdar and A. Pal, *Materials Research Bulletin*, 2021, **133**, 111074.