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Model and methods of DFT calculation:

We have employed the first-principles1, 2 to perform all density functional theory 

(DFT) calculations within the generalized gradient approximation (GGA) using the 

Perdew-Burke-Ernzerhof (PBE)3 formulation. We have chosen the projected 

augmented wave (PAW) potentials4, 5 to describe the ionic cores and take valence 

electrons into account using a plane wave basis set with a kinetic energy cutoff of 450 

eV. Partial occupancies of the Kohn−Sham orbitals were allowed using the Gaussian 

smearing method and a width of 0.05 eV. For the optimization of both geometry and 

lattice size, the Brillouin zone integration was performed with a 0.04 Å-1 k-mesh 

Monkhorst-Pack sampling6. The self-consistent calculations applied a convergence 

energy threshold of 10-5 eV. The equilibrium geometries and lattice constants were 

optimized with maximum stress on each atom within 0.02 eV Å-1. The 15 Å vacuum 

layer was normally added to the surface to eliminate the artificial interactions between 

periodic images. The weak interaction was described by DFT+D3 method using 

empirical correction in Grimme’s scheme7, 8. Spin polarization method was adopted to 

describe the magnetic system. The adsorption energy of adsorbent was calculated as: 

Eads = E(*adsorbent) - E(*) - E(adsorbent). E(*adsorbent), E(*) and E(adsorbent) 

represent the total energy of * adsorbent, * and adsorbent molecule, respectively. 

What’s more, the input files and output data of band structure and DOS were 

generated by the tool——Vaspkit9.
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Figure S1. SEM images of NiAl-LDH.
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Figure S2. TEM images and EDS mappings of NiAl-LDH.
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Figure S3. XPS spectra of NiAl-LDH and NiAl-LDH with different vacancy contents: (a) survey 
spectra, (b) Ni 2p, (c) Al 2p, and (d) O 1s.
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Figure S4. Pore size distribution of (a) NiAl-LDH-60 and (b) NiAl-LDH.
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Figure S5. (a) CV and (b) GCD curves of NiAl-LDH; (c) CV and (d) GCD curves of NiAl-LDH-
20; (e) CV and (f) GCD curves of NiAl-LDH-40; (g) CV and (h) GCD curves of NiAl-LDH-80; (i) 
CV and (j) GCD curves of NiAl-LDH-100.
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Figure S6. CV comparison plots of NiAl-LDH with different oxygen vacancy concentrations at 
50 mV s-1 sweep rates.



S-9

Figure S7. Volcano-type trend of the areal capacitances.
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Figure S8. Plot of the anodic peak current density against the scan rate for electrode (a) NiAl-
LDH; (b) NiAl-LDH-60.
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Figure S9. CV curves in the non-faradaic capacitance current range. (a)NiAl-LDH; (b)NiAl-
LDH-60; (c) Cdl curves of NiAl-LDH and NiAl-LDH-60.
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Figure S10. EIS plots for NiAl-LDH and NiAl-LDH-60.
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Figure S11. (a) CV curves at a scan rate of 100 mVs -1underdifferent voltage windows (0-1.2 V to 
0-1.7 V; (b) voltage windows of 1.5V, 1.6V and 1.7V.



S-14

Figure S12. Cycling performance of the SSC device.
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Figure S13. Real application of two as-prepared SSC devices in series to light up a red LED 
indicator.
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Table S1. Adsorption energy of NiAl-LDH-60

Units (eV) The first OH- The second OH-

E(OH) -7.7290 -7.7290

E(slab) -659.4136 -671.1244

E(slab*OH) -671.1244 -683.1926

E(ads) -3.9817 -4.3392
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