Supporting information

UV-Vis method for investigation of gallium(III) complexation kinetics with NOTA and TRAP chelators: advantages, limitations and comparison with radiolabelling

Viktor Lebruška,^{*a*} Tereza Dobrovolná,^{*a*} Tereza Gemperle,^{*a*} Vojtěch Kubíček,^{*a**} Susanne Kossatz,^{*b*} Petr Hermann^{*a*}

^{*a*} Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague (Czech Republic). E–mail: <u>kubicek@natur.cuni.cz</u>; Tel.: +420 221951436; Fax: +420 221921253.

^b Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich (TUM), Einsteinstrasse 25, 81675, Munich, Germany

Table of content

Figure S1. Complexation of Ga ^{III} : example of results obtained by UV-Vis experiment for
chelator H ₃ nota 3
Figure S2. Comparison of UV-Vis and ¹ H NMR data for Ga^{III} complexation kinetics with H_3L^2
Figure S3. Characterization NMR spectra of chelator H_3L^1
Figure S4. Characterization NMR spectra of chelator H_3L^2
Figure S5. Characterization NMR spectra of chelator H_3L^3
Figure S6. Characterization NMR spectra of chelator H_3L^4
Figure S7a. Characterization NMR spectra of complex [GaL ¹] at 25 °C
Figure S7b. Characterization NMR spectra of complex [GaL ¹] at 90 °C 10
Figure S8. HRMS of complex $[GaL^1]$ 11
Figure S9. Characterization NMR spectra of complex [GaL ²] 12
Figure S10. HRMS of complex $[GaL^2]$
1

Figure S11. Characterization NMR spectra of complex [GaL ⁴] 14
Figure S12. HRMS of complex [Ga L^4] 15
Table S1. Overall protonation constants of studied ligands 16
Table S2. Overall stability constants of H_3L^1 complexes16
Table S3. Complexation rates and complexation half-times of Ga ^{III} ions with the studied
chelators 17
Figure S13. Change of the $[CuL^1]$ complex absorbance at 265 nm in the course of Ga ^{III}
complexation experiments at variable pH as a function of time
Figure S14. Change of the Cu^{II} complex absorbances at 265 nm (280 for H_3L^3) in the course

Figure S1. Example of change of the Cu^{II} complex spectra in the course of Ga^{III} complexation experiments with H₃nota (top) and the corresponding Cu^{II} complex absorbance at 265 nm as function of time (bottom). The line corresponds to the best fit according to Equation 1 (30 °C, $c_{chel} = 0.4$ mM, $c_{Ga} = 0.2$ mM, pH 1.25).

Figure S2. Comparison of UV-Vis and ¹H NMR data for Ga^{III} complexation kinetics with H₃L². Change of P–CH₂–CF₃ integral in ¹H NMR spectra during Ga^{III} complexation experiment (**A**) and the integral intensity as a function of time (**B**). The line corresponds to the best fit according to Equation 2. Change of the Cu^{II} complex spectra in the course of Ga^{III} complexation experiments with H₃L² (**C**) and the corresponding complex absorbance at 265 nm as function of time (**D**). The line corresponds to the best fit according to Equation 1 (30 °C, $c_{chel} = 0.4$ mM, $c_{Ga} = 0.2$ mM, pH 1.00).

Figure S3. ¹H (A), ³¹P (B), ³¹P{¹H} (C) and ¹³C{¹H} (D) NMR spectra of H₃L¹ (D₂O, pD 1.4) and detail of ³¹P NMR spectra (E) (162 MHz, D₂O + NaOD, pD 10.4)

Figure S4. ¹H (**A**), ³¹P (**B**), ³¹P{¹H} (**C**) ¹³C{¹H} (**D**), ¹⁹F (**E**) NMR spectra of H₃L² (D₂O, pD 1.6)

Figure S5. ¹H (**A**), ³¹P (**B**), ³¹P{¹H} (**C**) and ¹³C{¹H} (**D**) NMR spectra of H₃L³ (D₂O, pD 1.9) and detail of aromatic region of ¹H NMR spectra (**E**) (D₂O + NaOD, pD 10.7)

Figure S6. ${}^{1}H(A)$, ${}^{31}P(B)$, ${}^{31}P{}^{1}H{}(C)$ and ${}^{13}C{}^{1}H{}(D)$ NMR spectra of $H_{3}L^{4}(D_{2}O, pD 8.0)$

Characterisation of gallium(III) complexes

Ga-L¹

Figure S7a. ¹H (**A**), ³¹P (**B**), ³¹P{¹H} (**C**), ¹³C{¹H} (**D**) and ⁷¹Ga (**E**) NMR spectra of [GaL¹] at 25 °C (D₂O, pD 7.6)

Figure S7b. ¹H (**A**), ³¹P (**B**) and ³¹P{¹H} (**C**) NMR spectra of [GaL¹] at 90 °C (D₂O, pD 6.2)

Figure S8. High-resolution mass spectra of $[GaL^1]$ in the negative mode

Figure S9. ¹H (A), ³¹P (B), ³¹P{¹H} (C), ¹³C{¹H} (D), ⁷¹Ga (E) and ¹⁹F (F) NMR spectra of $[GaL^2]$ (D₂O, pD 5.4)

Figure S10. High-resolution mass spectra of $[GaL^2]$ in the negative mode

Figure S11. ¹H (**A**), ³¹P (**B**), ³¹P{¹H} (**C**), ¹³C{¹H} (**D**) and ⁷¹Ga (**E**) NMR spectra of [GaL⁴] (D₂O, pD 7.6)

Figure S12. High-resolution mass spectra of $[GaL^4]$ in the negative mode

Table S1. Overall protonation constants (log β) of ligands H₃L¹ and H₃L³ (*I* = 0.1M (NMe₄)Cl, 25 °C)

Species	H_3L^1	H_3L^4
HL	11.54(2)	11.21(1)
H_2L	14.97(5)	20.04(2)
H ₃ L	16.37(6)	28.20(1)
H ₄ L	-	35.50(1)
H ₅ L	-	37.59(2)

Table S2. Overall stability constants ($\log\beta$) of H₃L¹ complexes (I = 0.1M (NMe₄)Cl, 25 °C)

Species	Ga ^{III}	Cu ^{II}	
[M(L)]	20.5(3)	14.7(5)	
[M(HL)]	22.3(3)	-	
[M(L)(OH)]	14.1(2)	3.69(6)	

Table S3. Rate constants and times necessary for 99% complexation of Ga^{III} complexation with the studied chelators as function of pH obtained by UV-Vis experiments ($c_{chel} = 0.4 \text{ mM}$, $c_{Ga} =$ 0.2 mм, 30 °С, pH 0.25-3.0)

H ₃ notP ^{Pr}				H_3L^2	_		
pН	$k_{ m obs}[m s^{-1}]$	<i>t</i> 99% [s]	<i>t</i> 99%	pН	$k_{ m obs}[m s^{-1}]$	<i>t</i> 99% [s]	<i>t</i> 99%
0.25	$1.2(2) \cdot 10^{-5}$	$3.8 \cdot 10^5$	107 h	0.50	$1.51(8) \cdot 10^{-5}$	$3.05 \cdot 10^5$	85 h
0.50	$7.1(4) \cdot 10^{-5}$	$6.5 \cdot 10^4$	18 h	1.00	$2.7(2) \cdot 10^{-4}$	$1.7 \cdot 10^4$	5 h
1.00	$1.61(7) \cdot 10^{-3}$	$2.86 \cdot 10^3$	48 min	1.60	$2.9(3) \cdot 10^{-3}$	$1.6 \cdot 10^3$	27 min
1.50	$1.6(2) \cdot 10^{-2}$	290	5 min	2.00	$7.5(5) \cdot 10^{-3}$	620	10 min
2.05	$9.3(4) \cdot 10^{-2}$	49	49 s	2.45	$3.2(1) \cdot 10^{-2}$	140	2 min

H₃nota

H ₃ nota				H_3L^3			
pН	$k_{ m obs}[m s^{-1}]$	<i>t</i> 99% [s]	<i>t</i> 99%	pН	$k_{ m obs}[m s^{-1}]$	<i>t</i> 99% [s]	<i>t</i> 99%
1.00	$9.5(9) \cdot 10^{-6}$	$4.8 \cdot 10^5$	135 h	1.65	$7.1(4) \cdot 10^{-5}$	$6.4 \cdot 10^4$	18 h
1.25	$5.0(2) \cdot 10^{-5}$	$9.3 \cdot 10^4$	26 h	2.00	$2.8(2) \cdot 10^{-4}$	$1.6 \cdot 10^4$	4 h
1.55	$3.0(2) \cdot 10^{-4}$	$1.5 \cdot 10^4$	4 h	2.60	$2.3(2) \cdot 10^{-3}$	$2.0 \cdot 10^{3}$	33 min
2.00	$2.9(2) \cdot 10^{-3}$	$1.6 \cdot 10^3$	26 min	3.00	$1.2(1) \cdot 10^{-2}$	380	6 min
2.60	$5.2(3) \cdot 10^{-2}$	88	88 s				

H_3L^1	_		_	H_3L^4	_		_
pН	$k_{ m obs}[m s^{-1}]$	<i>t</i> 99% [s]	<i>t</i> 99%	pН	$k_{ m obs}[m s^{-1}]$	<i>t</i> 99% [s]	<i>t</i> 99%
0.50	8.6(3) · 10 ⁻⁶	$5.3 \cdot 10^5$	149 h	1.00	$1.9(2) \cdot 10^{-5}$	$2.4 \cdot 10^5$	68 h
1.00	$1.47(9) \cdot 10^{-4}$	$3.12 \cdot 10^4$	9 h	1.65	$1.3(1) \cdot 10^{-4}$	$3.4 \cdot 10^4$	10 h
1.60	$1.22(6) \cdot 10^{-3}$	$3.77 \cdot 10^3$	62 min	2.00	$3.4(3) \cdot 10^{-4}$	$1.3 \cdot 10^4$	4 h
2.00	$3.5(2) \cdot 10^{-3}$	$1.3 \cdot 10^3$	21 min	2.60	$2.3(2) \cdot 10^{-3}$	$2.0 \cdot 10^3$	34 min
2.55	$1.89(4) \cdot 10^{-2}$	243	4 min	3.00	$8.2(6) \cdot 10^{-3}$	560	9 min

Figure S13. Change of the [CuL¹] complex absorbance at 265 nm in the course of Ga^{III} complexation experiments at pH 0.50 (**A**), 1.00 (**B**), 1.60 (**C**), 2.00 (**D**), 2.55 (**E**) as a function of time. The lines correspond to the best fit according to Equation 1 (30 °C, $c_{chel} = 0.4$ mM, $c_{Ga} = 0.2$ mM).

Figure S14. Change of the Cu^{II} complex absorbances at 265 nm (280 for H₃L³) in the course of Ga^{III} complexation experiments as a function of time for H₃nota (**A**), H₆notP^{Pr} (**B**), H₃L¹ (**C**), H₃L² (**D**), H₃L³ (**E**), H₃L⁴ (**F**). The lines correspond to the best fit according to Equation 1 (30 °C, $c_{chel} = 0.4$ mM, $c_{Ga} = 0.2$ mM).