Asymmetric Magnetic Nanosnowman Loaded with AgPd Nanocage Toward NIR-enhanced Catalytic Activity

Jie Jin^{a,*}, Haoran Li^a, Hongfa Wang^b, Qunling Fang^{c,*}, Yunqi Xu^b, Weili Kong^a, Xia Chen^a, Ken Cham-Fai Leung^d, Hailong Wang^{b,*}, Shouhu Xuan^b

^a School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China

^b CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, PR China

^c School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China

^d State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region of China

*Corresponding author: Asso. Prof. Jie Jin E-mail: jinjie@ahjzu.edu.cn

Asso. Prof. Qunling Fang E-mail: fql.good@hfut.edu.cn

Prof. Hailong Wang E-mail: hailwang@ustc.edu.cn

Experimental section

Materials

Iron (III) chloride hexahydrate (FeCl₃·6H₂O), Poly(acrylic acid) (PAA, ~2000), Sodium citrate (C₆H₅Na₃O₇·2H₂O), Ethanol (EtOH), Urea (H₂NCONH₂), Silver nitrate (AgNO₃), Ammonium hydroxide (NH₃·H₂O), Palladium (II) chloride (PdCl₂), Sodium borohydride (NaBH₄), 3-Hydroxytyrosine hydrochloride (DA-HCl), Trihydroxymethyl aminomethane (Tris-HCl), Glacial acetic acid (C₂H₄O₂) 4nitrophenol (C₆H₅NO₃), Methylene Blue trihydrate (C₁₆H₁₈ClN₃S·3H₂O), Methyl orange (CHN₃SO₃Na) and N,N-Dimethylformamide (DMF, C₃H₇NO) were purchased from Sinopharm Chemical Reagent Co., Ltd. Ethylene glycol (EG, (CH₂OH)₂), Polyvinylpyrrolidone (PVP, (C₆H₉NO)_n), Iodobenzene (C₆H₅I), 4-Iodotoluene (C₇H₇I), 4-Iodophenetole (C₈H₉IO), 4-Iodoanisole (IC₆H₄OCH₃), Bromobenzene (C₆H₅Br), Chlorobenzene (C₆H₅Cl), Methyl acrylate (C₄H₆O₂), Triethylamine (C₆H₁₅N) and Dichloromethane (CH₂Cl₂) were purchased from Aladdin Chemical Co., Ltd, China. Petroleum ether (PE, C₅HC₆HC₇H) and Ethylacetate (EA, C₄H₈O₂) were purchased from Macklin Biochemical Technology Co., Ltd. All reagents were used as received without further purification and ultrapure water was used in all experiments.

Synthesis of Fe₃O₄@Ag/PDA nanospheres: First, 15 mg Fe₃O₄ nanospheres were dispersed in 50 mL of ethanol using ultrasonication, followed by the addition of PVP (0.1 g) and further ultrasonication for 1 h. Subsequently, Ag(NH₃)₂OH (0.5 mL, 8.8×10^{-5} M) was introduced under magnetic stirring. After 14 h, the reaction system was transferred to ultrasound at 35 °C. Following a 30 min interval, NaBH₄ (10 mg) was added. 30 min later, the Tris-HCl buffer (25 mL, pH=8.5) mixed with dopamine (25 mg) was poured into the conical flask. After 4 h, the products were collected with a magnet and washed alternately with deionized water and ethanol. Finally, the product was obtained by vacuum drying.

Synthesis of Fe_3O_4 (a)Pd/PDA nanospheres: First, 15 mg Fe_3O_4 nanospheres were dispersed in 50 mL of ethanol using ultrasonication, followed by the addition of PVP (0.1 g) and further ultrasonication for 1 h. Subsequently, the mixture was stirred magnetically for 14 h. Then, the reaction system was transferred to ultrasonic waves

at 35 °C. Following a 30 min interval, NaBH₄ (10 mg) and H₂PdCl₄ (0.01 M, 4.4 mL) were added. 30 min later, the Tris-HCl buffer (25 mL, pH=8.5) mixed with dopamine (25 mg) was poured into the conical flask. After 4 h, the products were collected with a magnet and washed alternately with deionized water and ethanol. Finally, the product was obtained by vacuum drying.

Synthesis of h-Fe₃O₄@AgPd/PDA nanospheres, MXene@AgPd/PDA nanosheets, α -Fe₂O₃@AgPd@PDA nanospindles, and SiO₂@AgPd/PDA nanospheres: Firstly, h-Fe₃O₄ nanospheres, MXene nanosheets, α -Fe₂O₃ nanospindles, SiO₂ nanospheres were synthesized by literatures¹⁻⁴. The subsequent synthesis methods were consistent with those of Fe₃O₄@AgPd/PDA nanosnowman.

DFT calculation details

The density functional theory (DFT) calculation was carried out using Vienna Ab initio Simulation Package (VASP). The exchange–correlation energy functional was described by Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE). The projector augmented wave (PAW) pseudopotentials were used to describe the core electrons interaction. The Brillouin zone integration was performed using a grid of $4\times4\times1$ Gamma center scheme, which was corresponded to a density of 0.04 $2\pi/Å$. The plane wave energy cutoff was set to 420 eV, while the vacuum region was set to 15 Å. The energy convergence threshold was set to 10^{-6} eV and the force threshold was set to 0.01 eV/Å. The heterostructures were constituted of Fe₃O₄ (110) and AgPd (111), comprising 48 Fe atoms, 64 O atoms, 12 Ag atoms, and 12 Pd atoms.

The charge density difference was calculated by the formula,

$$\Delta \rho = \rho (AgPd@Fe_3O_4) - \rho (AgPd) - \rho (Fe_3O_4)$$
(3)

Where the $\rho(AgPd@Fe_3O_4)$, $\rho(AgPd)$, $\rho(Fe_3O_4)$ were the charge density of AgPd@Fe_3O_4, AgPd, and Fe_3O_4, respectively.

Characterization

Field emission transmission electron microscopy (FE-TEM, JEM-2100F) was used to observe the morphology and nanostructure of the samples. Field emission scanning electron microscopy (FE-SEM) images were obtained on a Regulus 8230 HR-FESEM.

The crystal structure of the samples was determined by X-ray diffraction (XRD, SmartLab). The surface elemental composition, chemical states, and electronic structure of the material were determined by an X-ray photoelectron spectrometer (XPS, ESCALAB250Xi). The functional groups of all samples in the range of 4000-500 cm⁻¹ wave number were analyzed by FT-IR (Nicolet 6700). An inductively coupled plasma-mass spectrometer (ICP-AES, iCAP 7400) was used to analyze the metal content in the products. An UV spectrophotometer (UV-1800, Shimadzu) was used to determine the absorbance of the substances during the catalytic process. A Gas chromatography-Fourier transform electrostatic field orbital trap ultra-high resolution mass spectrometer (GC-MS, Q Exactive GC) was used to separate and identify the complex components. A nuclear magnetic resonance spectrometer (AV-III 400 MHz NMR) was used to provide information about the chemical environment and bonds of atoms in a compound molecule.

Fig. S1 Size distribution histogram of Fe_3O_4 (a), the "body" of Fe_3O_4 @AgPd/PDA nanosnowman (b), the outer diameter of AgPd nanocage (c), and the inner diameter of AgPd nanocage (d).

Fig. S2 Near-infrared absorption spectra of the Fe₃O₄@AgPd/PDA nanosnowman.

Fig. S3 GC-MS spectra of the products obtained using $Fe_3O_4@AgPd/PDA$ nanosnowman as a catalyst and chlorobenzene and methyl acrylate as a reaction substrate.

Fig. S4 GC-MS spectra of the products obtained using $Fe_3O_4@AgPd/PDA$ nanosnowman as a catalyst and bromobenzene and methyl acrylate as a reaction substrate.

Fig. S5 FTIR spectra of methyl cinnamate, methyl 4-methylcinnamate, methyl (*E*)p-methoxycinnamate, and methyl 4-ethoxy cinnamate.

Fig. S6 ¹H NMR spectra of methyl cinnamate.

Fig. S7 ¹³C NMR spectra of methyl cinnamate.

Fig. S8 ¹H NMR spectra of methyl 4-methylcinnamate.

Fig. S9 ¹³C NMR spectra of methyl 4-methylcinnamate.

Fig. S10 ¹H NMR spectra of methyl (*E*)-p-methoxycinnamate.

Fig. S11 ¹³C NMR spectra of methyl (*E*)-p-methoxycinnamate.

Fig. S12 ¹H NMR spectra of methyl 4-ethoxy cinnamate.

Fig. S13 ¹³C NMR spectra of methyl 4-ethoxy cinnamate.

Supporting Tables

Table. S1 The weight percentage of Ag and Pd elements in samples was determined by ICP-AES.

samples elements	Fe ₃ O ₄ @Ag/PDA	Fe ₃ O ₄ @Pd/PDA	Fe ₃ O ₄ @AgPd/PDA nanospheres	Fe ₃ O ₄ @AgPd/PDA nanosnowman
Ag	12.2 wt%		6.46 wt%	11.10 wt%
Pd		3.0 wt%	4.59 wt%	6.89 wt%

Table. S2 Comparison of the catalytic capacities of various catalysts reported in the literature for the reduction of 4-NP, MO, and MB by NaBH₄.

Organic pollutants	Catalysts	$k_n(\mathrm{min}^{-1}~\mathrm{mg}^{-1})$	References
	kaolin-PDA-PdAg	0.3456	5
	UiO-66/btb/Pd NPs	2.943	6
4-NP	MXene@AgPd@PDA	1.2	7
	Ag–Co/CNF	1.032	8
	Fe ₃ O ₄ @AgPd/PDA	5.95	This work
	Ag/ZIF-7	17.28	9
	Fe ₃ O ₄ @polythiophen-Ag	2.82	10
МО	PdNPs/RGO-A	0.6	11
	Pd/CCS-Per	1.4	12
	Fe ₃ O ₄ @AgPd/PDA	26	This work
	ZBD@Ag	1.83	13
	Ag@PDA NTs	3.191	14
MB	Fe ₃ O ₄ @TA/Ag	2.06	15
	12%-Ag/MX/PAM	5.84	16
	Fe ₃ O ₄ @AgPd/PDA	13.35	This work

Entr	y Actant	Product	Conversion (%)	Selectivity (%)
1.	I	O O O	99	>99.8
2.	H ₃ CO	H ₃ CO	99.6	>99.9
3.	H ₃ C	H ₃ C	98.7	>99.9
4.	H ₃ CH ₂ CO	H ₃ CH ₂ CO	95.4	>99.9
5.	Cl	-	_	-
6.	Br	-	_	_

TADIE. SS HECK CLOSS-COUPINING FEACTIONS WITH UNITCICIT SUBSTRACE	Table.	S3 Heck	cross-co	upling	reactions	with	different	substrates
--	--------	---------	----------	--------	-----------	------	-----------	------------

Reaction conditions: aryl iodide 1 mmol, methyl acrylate 2 mmol, Fe₃O₄@AgPd/PDA catalyst 5 mg, triethylamine (Et₃N) 2 mmol, DMF 5 mL, 100 °C, 5 h.

References

- 1. W. Cheng, K. Tang, Y. Qi, J. Sheng and Z. Liu, *Journal of Materials Chemistry*, 2010, **20**, 1799-1805.
- A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu, L. Mi and L. Song, *Materials & Design*, 2017, **114**, 161-166.
- 3. Q. Xiong, Q. Fang, K. Xu, G. Liu, M. Sang, Y. Xu, L. Hao and S. Xuan, *Dalton Transactions*, 2021, **50**, 14235-14243.
- 4. P. A. Bazuła, P. M. Arnal, C. Galeano, B. Zibrowius, W. Schmidt and F. Schüth, *Microporous and Mesoporous Materials*, 2014, **200**, 317-325.
- D. Gan, Z. Wang, X. Li, J. Zhou, B. Dai, L. Yang and S. Xia, *Applied Clay Science*, 2023, 244, 107091.
- 6. Z. Kiani, R. Zhiani, S. Khosroyar, A. Motavalizadehkakhky and M. Hosseiny, *Inorganic Chemistry Communications*, 2021, **124**, 108382.
- J. Jin, S. Wu, J. Wang, Y. Xu, S. Xuan and Q. Fang, *Dalton Transactions*, 2023, **52**, 2335-2344.
- V. K. Landge, S. H. Sonawane, S. Manickam, G. U. Bhaskar Babu and G. Boczkaj, *Journal of Environmental Chemical Engineering*, 2021, 9, 105719.
- A. Malik and M. Nath, *Journal of Environmental Chemical Engineering*, 2020, 8, 104547.
- M. S. Najafinejad, P. Mohammadi, M. Mehdi Afsahi and H. Sheibani, *Journal of Molecular Liquids*, 2018, 262, 248-254.
- 11. M. Hashemi Salehi, M. Yousefi, M. Hekmati and E. Balali, *Applied Organometallic Chemistry*, 2019, **33**.
- 12. Z. Farrokhi, S. Sadjadi, F. Raouf and N. Bahri Laleh, *Inorganic Chemistry Communications*, 2022, **143**, 109734.
- 13. A. Lajevardi, M. Tavakkoli Yaraki, A. Masjedi, A. Nouri and M. Hossaini Sadr, *Journal of Molecular Liquids*, 2019, **276**, 371-378.
- J. Lu, J. Fang, J. Li, C. Wang, Z. He, L. Zhu, Z. Xu and H. Zeng, ACS Applied Nano Materials, 2019, 3, 156-164.
- 15. H. Veisi, S. B. Moradi, A. Saljooqi and P. Safarimehr, Materials Science and

Engineering: C, 2019, **100**, 445-452.

C. Peng, Z. Kuai, X. Li, S. Lian, D. Jiang, J. Tang, L. Li, R. Wu, A. Wu and S. Chen, *Materials & Design*, 2021, 210, 110061.