Supporting Information for:

Development of Thiacrown Ligands for Encapsulation of Mercury-197m/g into Radiopharmaceuticals

Parmissa Randhawa^{1,2}, Cailum M.K. Stienstra², Shaohuang Chen^{1,2}, Yang Gao^{3,4}, Georg Schreckenbach³, Valery Radchenko^{2,5} and Caterina F. Ramogida^{1,2*}

¹Department of Chemistry, Simon Fraser University, Canada, ²Life Sciences Division, TRIUMF, Canada, ³Department of Chemistry, University of Manitoba, Canada, ⁴Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, China, ⁵ Department of Chemistry, University of British Columbia, Canada

*Correspondence: cfr@sfu.ca

Contents

NMR Characterization	S2
Mass Spectrometry	S25
Density Functional Theory	S26
Radiolabeling and Stability	S29
References	S32

NMR Characterization

Figure S1. ¹H NMR (400 MHz, CDCl₃^{*}, 25 °C): compound 1.

Figure S2. ¹H NMR (400 MHz, CDCl₃^{*}, 25 °C): compound **1**.

Figure S3. ¹H NMR (400 MHz, $CDCl_3^*$, 25 °C): compound 2.

Figure S4. ¹³C{¹H} NMR (101 MHz, CDCl₃^{*}, 25 °C): compound **2**.

Figure S5. ¹H NMR (400 MHz, CDCl₃^{*}, 25 °C): compound **3**.

Figure S6. ¹³C{¹H} NMR (101 MHz, CDCl₃^{*}, 25 °C): compound **3**.

Figure S7. ¹H NMR (500 MHz, D₂O^{*}, 25 °C): N₂S₄-H₂Pa.

Figure S8. ¹³C{¹H} NMR (126 MHz, D₂O, 25 °C): N₂S₄-H₂Pa.

Figure S9. ¹H NMR (600 MHz, CD₃CN^{*}, 25 °C): **N₂S₄-Py.** (**H₂O)

Figure S10. ¹³C{¹H} NMR (151 MHz, CD₃CN^{*}, 25 °C): N₂S₄-Py.

Figure S11. ¹H NMR (600 MHz, CDCl₃^{*}, 25 °C): N₂S₄-Thio. (**CH₂Cl₂, ***ethyl acetate)

Figure S12. ¹³C{¹H} NMR (151 MHz, CDCl₃, 25 °C): N₂S₄-Thio. (**CH₂Cl₂, ***ethyl acetate)

Figure S13. ¹H NMR (600 MHz, DMSO-*d*₆^{*}, 25 °C): [^{nat}Hg(N₂S₄-Pa)] at 24 h. (**H₂O)

 3.8
 8.6
 8.4
 8.2
 8.0
 7.8
 7.6
 7.4
 7.2
 7.0
 6.8
 6.6
 6.4
 6.2
 6.0
 5.8
 5.6
 5.4
 5.2
 5.0
 4.8
 4.6
 4.4
 4.2
 4.0
 3.8
 3.6
 3.4
 3.2
 3.0
 2.8
 2.6
 2.4
 2.2

 Chemical Shift (ppm)

Figure S14. ¹H NMR (600 MHz, DMSO-*d*₆, 25 °C): N₂S₄-Pa and [^{nat}Hg(N₂S₄-Pa)] formation over time.

Figure S15. ¹H-¹³C HSQC NMR(600 MHz- 161 MHz, DMSO-*d*₆, 25 °C): [^{nat}Hg(N₂S₄-Pa)].

Figure S16. ¹H NMR (600 MHz, DMSO-*d*₆^{*}, 25 °C): [^{nat}Hg(N₂S₄-Py)]²⁺ at 24 h.(**H₂O)

Figure S17. ¹H NMR (600 MHz, DMSO-*d*₆, 25 °C): N₂S₄-Py and [^{nat}Hg(N₂S₄-Py)]²⁺ formation over time.

Figure S18. ¹H NMR (600 MHz, DMSO-*d*₆): [^{nat}Hg(N₂S₄-Py)]²⁺ at 45 °C (top) and 25 °C (bottom).

Figure S19. ¹H-¹³C HSQC NMR(600 MHz- 161 MHz, DMSO-*d*₆, 25 °C): [^{nat}Hg(N₂S₄-Py)]²⁺.

Figure S20. ¹H NMR (600 MHz, DMSO-*d*₆^{*}, 25 °C): [^{nat}Hg(N₂S₄-Thio)]²⁺ at 24 h.(**H₂O)

Figure S21. ¹H NMR (600 MHz, DMSO- d_6 , 25 °C): N₂S₄-Thio and [^{nat}Hg(N₂S₄-Thio)]²⁺ formation over time.

Figure S22. ¹H NMR (600 MHz, DMSO-*d*₆): [^{nat}Hg(N₂S₄-Thio)]²⁺ at 45 °C (top) and 25 °C (bottom).

Figure S23. ¹H-¹³C HSQC NMR(600 MHz- 161 MHz, DMSO-*d*₆, 25 °C): [^{nat}Hg(N₂S₄-Thio)]²⁺.

Mass Spectrometry

Figure S24. HRMS for [^{nat}Hg(N₂S₄-Pa)], ESI-HRMS m/z calcd. for [C₂₆H₃₄N₄O₄S₄Hg + H]⁺ 797.125; found 797.166 [M+H]⁺.

Figure S25. HRMS for $[^{nat}Hg(N_2S_4-Py)]^{2+}$, ESI-HRMS m/z calcd. for $[(C_{24}H_{36}N_4S_4Hg)^{2+} + Cl^-]^+$ 745.121; found 745.111 $[M+Cl]^+$.

Figure S26. HRMS for $[^{nat}Hg(N_2S_4-Thio)]^{2+}$ ESI-HRMS m/z calcd. for $[(C_{18}H_{38}N_2S_6Hg)^{2+} + Cl^{-}]^+$ 711.075; found 711.078 $[M+Cl]^+$.

Density Functional Theory

 ϵ_0 =Electronic energy

 ϵ_{ZPE} =Zero point energy correction

 G_{corr} = Thermal free energy correction

 ΔG_{solv} = Change in energy as a result of solvation

$$G_{gas} = \epsilon_0 + \epsilon_{ZPE} + G_{corr}$$

$$G_{soln} = G_{gas} + \Delta G_{solv}$$
(1)0 h

Table S1. Calculated ΔG_{gas} , ΔG_{solv} , G_{soln} and ΔG_{soln} energies for all investigated conformers of the $[Hg(N_2S_4-Py)]^{2+}$ complex. The lowest energy conformation is highlighted in bold.

Conformer	Sidearm Orientation	Backbone	Relative G _{gas} (kJ/mol)	ΔG _{solv} (Hartree)	G _{soln} (Hartree)	Relative G _{soln} (kJ/mol)
1	cis	λ,λ,δ,λ,λ,δ	81.3	-0.22147	-2901.33939	21.1
2	trans	δ,λ,λ,δ,λ,δ	14.3	-0.19454	-2901.33798	24.8
3	cis	δ,λ,δ,λ,λ,δ	39.4	-0.20408	-2901.33799	24.8
4	trans	λ,λ,δ,δ,λ,δ	2.2	-0.19704	-2901.34511	6.1
5	cis	δ,λ,δ,λ,λ,λ	0.0	-0.19632	-2901.34522	5.8
6	trans	λ,λ,λ,δ,λ,δ	2.3	-0.19762	-2901.34564	4.7
7	cis	δ,λ,δ,δ,δ,δ	43.6	-0.20984	-2901.34213	13.9
8	trans	δ,λ,λ,δ,δ,δ	42.2	-0.20428	-2901.33711	27.1
9	cis	δ,λ,δ,λ,δ,δ	20.9	-0.20647	-2901.34743	0.0
10	trans	δ,δ,δ,δ,δ,δ	24.1	-0.20407	-2901.34381	9.5
11	cis	δ,δ,δ,λ,δ,δ	39.7	-0.20301	-2901.33680	27.9
12	cis	δ,δ,δ,λ,λ,δ	32.8	-0.20782	-2901.34425	8.3
13	trans	δ,λ,λ,δ,δ,λ	27.7	-0.20466	-2901.34300	11.6

Conformer	Sidearm Orientation	Backbone	Relative G _{gas} (kJ/mol)	ΔG _{solv} (Hartree)	Gsoln (Hartree)	Relative G _{soln} (kJ/mol)
1	cis	δ,λ,δ,λ,δ,λ	45.2	-0.21420	-3360.75521	45.7
2	trans	λ,δ,λ,λ,λ,λ	61.1	-0.21687	-3360.75183	54.6
3	cis	λ,δ,δ,λ,λ,δ	43.4	-0.22067	-3360.76237	26.9
4	trans	λ,δ,δ,λ,λ,λ	19.7	-0.21606	-3360.76678	15.4
5	cis	λ,δ,λ,δ,λ,δ	19.0	-0.21819	-3360.76918	9.1
6	trans	λ,δ,λ,λ,δ,δ	24.0	-0.20793	-3360.75701	41.0
7	cis	δ,λ,δ,λ,δ,λ	9.8	-0.21816	-3360.77263	0.0
8	cis	λ,λ,λ,δ,λ,δ	37.7	-0.22318	-3360.76702	14.7
9	trans	λ,λ,λ,λ,λ,λ	61.1	-0.21687	-3360.75183	54.6
10	cis	λ,λ,δ,λ,λ,δ	19.0	-0.21488	-3360.76585	17.8
11	cis	λ,δ,δ,δ,λ,δ	0.0	-0.20560	-3360.76381	23.2

Table S2. Calculated ΔG_{gas} , ΔG_{solv} , G_{soln} and ΔG_{soln} energies for all investigated conformers of the [Hg(N₂S₄-Thio)]²⁺ complex. The lowest energy conformation is highlighted in bold.

Table S3. Calculated ΔG_{gas} , ΔG_{solv} , G_{soln} and ΔG_{soln} energies for all investigated conformers of the **[Hg(N₂S₄-Pa)]** complex. The lowest energy conformation is highlighted in bold.

Conformer	Sidearm Orientation	Backbone	Relative ∆G _{gas} (kJ/mol)	ΔG _{solv} (Hartree)	G _{soln} (Hartree)	Relative AGsoln (kJ/mol)
1	Cis	δ,δ,λ,δ,λ,λ	67.9	-0.03788	-3277.69609	58.2
2	Trans	δ,δ,δ,λ,δ,λ	47.1	-0.04202	-3277.70814	26.6
3	Cis	λ,δ,δ,δ,λ,δ	33.6	-0.04562	-3277.71688	3.6
4	Trans	δ,λ,δ,λ,δ,λ	76.6	-0.03391	-3277.68878	77.4
5	Cis	δ,δ,δ,λ,δ,λ	32.8	-0.04081	-3277.71239	15.4
6	Trans	λ,λ,δ,λ,δ,λ	123.8	-0.04292	-3277.67984	100.9
7	Cis	δ,δ,λ,δ,δ,δ	0.0	-0.03421	-3277.71827	0.0
8	Trans	δ,λ,δ,δ,λ,λ	54.4	-0.02791	-3277.69124	71.0
9	Cis	λ,λ,δ,δ,δ,λ	0.6	-0.03383	-3277.71767	1.6
10	Trans	δ,δ,δ,λ,λ,λ	35.7	-0.03808	-3277.70854	25.5
11	Cis	δ,δ,λ,δ,δ,λ	37.9	-0.04314	-3277.71278	14.4

Bond Length (Å)			Bond Angle (°)			
	Conformer 5	Conformer 9		Conformer 5	Conformer 9	
S1-Hg	2.909	2.724	S1-Hg-S2	75.6	78.3	
S2-Hg	2.823	2.925	S2-Hg-N4	62.7	70.1	
S3-Hg	2.841	2.773	N4-Hg-S3	66.1	75.9	
S4-Hg	2.852	4.321	S3-Hg-S4	77.6	56.8	
N1-Hg	2.985	2.934	S4-Hg-N1	67.7	53.6	
N2-Hg	2.501	2.436	N1-Hg-S1	63.7	71.4	
N3-Hg	2.525	2.539				
N4-Hg	3.000	2.693				

Table S4. Selected bond angles and distances for conformers 5 ($\Delta G_{gas} = 0 \text{ kJ/mol}$) and 9 ($\Delta G_{soln} = 0 \text{ kJ/mol}$) of the [**Hg**(**N**₂**S**₄-**P**y)]²⁺ complex.

Table S5. Selected bond angles and distances for conformers 7 ($\Delta G_{gas}= 0 \text{ kJ/mol}$) and 11 ($\Delta G_{soln}= 0 \text{ kJ/mol}$) of the [Hg(N₂S₄-Thio)]²⁺ complex.

Bond Length (Å)				Bond Angle ((°)
	Conformer 11	Conformer 7		Conformer 11	Conformer 7
S1-Hg	2.939	2.941	S1-Hg-S2	71.5	76.3
S2-Hg	2.857	2.767	S2-Hg-N2	67.8	66.4
S3-Hg	2.861	2.596	N2-Hg-S3	69.1	62.2
S4-Hg	2.696	3.898	S3-Hg-S4	78.5	56.3
S5-Hg	2.961	2.658	S4-Hg-N1	57.4	50.6
S6-Hg	2.698	2.787	N1-Hg-S1	54.9	56.4
N1-Hg	3.755	3.858			
N2-Hg	3.031	3.166			

Bond Length (Å)				Bond Le	ngth (Å)		
	Conf. 11	Conf. 7	Conf. 3		Conf. 11	Conf. 7	Conf 3.
S1-Hg	2.659	3.905	2.737	O1-Hg	2.471	2.445	2.378
S2-Hg	3.693	2.756	4.022	O2-Hg	2.380	2.431	2.413
S3-Hg	3.408	3.994	4.753	N2-Hg	2.524	2.482	2.444
S4-Hg	4.218	2.731	2.737	N3-Hg	2.450	2.542	2.417
N1-Hg	3.052	3.111	2.938	N4-Hg	3.070	3.238	3.684

Table S6. Selected bond angles and distances for conformer 11, 7 and 3 ($\Delta G_{gas}=0$ kJ/mol) and 9 ($\Delta G_{soln}=0$ kJ/mol) of the [natHg][Hg(N₂S₄-Pa)] complex.

Radiolabeling and Stability

Figure S27. iTLC of N_2S_4 -Thio at 10⁻⁴ M, showing 94.7% RCY at 80 °C.

Figure S28. iTLC of N_2S_4 -Thio at 10⁻⁶ M, showing 5.8 % RCY at 80 °C.

Figure S29. iTLC of N_2S_4 -Py at 10⁻⁴ M, showing 100 % RCY at 80 °C.

Table S7. Average RCYs (%) of [^{197m/g}Hg]Hg-Complexes at 80 °C after 60 min, in 1 M NH₄OAc buffer (pH 7).

%RCY	Concentration (M)					
	10-4	10 ⁻⁵	10-6	10-7		
[^{197m/g} Hg][Hg(N ₂ S ₄ - Py)] ²⁺	$100.0\pm0.0\%$	86.2 ± 1.9 %	17.3 ± 6.6 %	$6.3 \pm 2.4 \%$		
[^{197m/g} Hg][Hg(N ₂ S ₄ - Thio)] ²⁺	$96.8\pm0.5\%$	65.0 ± 4.5 %	$11.9 \pm 9.0 \%$	6.4 ± 1.0 %		
[^{197m/g} Hg][Hg(N ₂ S ₄ - Pa)] ²⁺	$26.0\pm1.3\%$	-	-	-		
[^{197m/g} Hg][Hg(NS4- BA)] ²⁺ *	$100.0 \pm 0.0\%$	$97.0 \pm 0.3 \%$	31.3 ± 2.0 %	-		

*[^{197m/g}Hg][Hg(NS4-BA)]²⁺ radiolabeling data is reproduced from Randhawa *et al.* after 1 h.¹

Table S8. Average RCYs (%) of [^{197m/g}Hg]Hg-Complexes at 25 °C after 60 min, in 1 M NH₄OAc buffer (pH 7).

%RCY	Concentration (M)				
	10-4	10-5	10-6	10-7	
[^{197m/g} Hg][Hg(N ₂ S ₄ - Py)] ²⁺	37.0 ± 3.3 %	-	-	-	
[^{197m/g} Hg][Hg(N ₂ S ₄ - Thio)] ²⁺	95.5 ± 1.8 %	12.3 ± 2.6 %	$5.3 \pm 4.0 \%$	-	
[^{197m/g} Hg][Hg(N ₂ S ₄ - Pa)] ²⁺	33.1 ± 0.2 %	-	-	-	

Table S9. Kinetic inertness of [^{197m/g}Hg]Hg-Complexes at 37 °C against human serum. (*n*=3)

^{197m/g} Hg-complex	Time point (h)				
% intact	1	3	16	24	72
[^{197m/g} Hg][Hg(N ₂ S ₄ -	$71. \pm 2.2 \%$	57.2 ± 8.2	58.9 ± 8.7	-	65.1 ± 1.5
Py)] ²⁺		%	%		%
[^{197m/g} Hg][Hg(N ₂ S ₄ -	75.5 ± 0.8	67.8 ± 5.0	70.8 ± 0.1	-	60.3 ± 2.1
Thio)] ²⁺	%	%	%		%
[^{197m/g} Hg][Hg(NS4-	84.7 ± 3.4	74.1 ± 7.0	-	-	-
BA)] ²⁺ *	%	%			

*[^{197m/g}Hg][Hg(NS4-BA)]²⁺ radiolabeling data is reproduced from Randhawa *et al.* after 1 h.¹

^{197m/g} Hg-complex	Time point (h)					
% intact	1	3	10	24	72	
[^{197m/g} Hg][Hg(N ₂ S ₄ -	85.8 ± 0.4	72.6 ± 0.4	-	$32.0\pm5.1\%$	-	
Py)] ²⁺	%	%				
[^{197m/g} Hg][Hg(N ₂ S ₄ -	77.8 ± 0.4	75.1 ± 3.0	-	$43.7\pm3.2\%$	-	
Thio)] ²⁺	%	%				
[^{197m/g} Hg][Hg(NS ₄ -	100.0 ± 0.0	-	97.3 ± 0.3	-	92.3 ± 0.5	
BA)] ²⁺ *	%		%		%	

Table S10. Kinetic inertness of [^{197m/g}Hg]Hg-Complexes at 37 °C against GSH. (*n*=3)

*[^{197m/g}Hg][Hg(NS₄-BA)]²⁺ radiolabeling data is reproduced from Randhawa *et al.* after 1 h.¹

Table S11. Kinetic inertness of $[^{197m/g}Hg]Hg$ -Complexes at 25 °C against stable biologically relevant metals (ZnCl₂, FeCl₃, CuCl₂, MgCl₂ and CoCl₂). (*n*=3)

^{197m/g} Hg-complex % intact	Time point (h)				
	24	48	85		
[^{197m/g} Hg][Hg(N ₂ S ₄ -Py)] ²⁺	$90.8 \pm 8.7 \%$	$83.9\pm5.0~\%$	73.0 ± 7.0 %		
[^{197m/g} Hg][Hg(N ₂ S ₄ -Thio)] ²⁺	86.2 ± 1.7 %	86.0 ± 2.6 %	86.9 ± 3.2 %		

References

- Gonçalves, P. F. B.; Stassen, H. Calculation of the Free Energy of Solvation from Molecular Dynamics Simulations. *Pure Appl. Chem.* 2004, *76* (1), 231–240. https://doi.org/10.1351/pac200476010231.
- (2) Randhawa, P.; Gower-Fry, K. L.; Stienstra, C. M. K.; Tosato, M.; Chen, S.; Gao, Y.; McDonagh, A. W.; Di Marco, V.; Radchenko, V.; Schreckenbach, G.; Ramogida, C. F. Selective Chelation of the Exotic Meitner-Auger Emitter Mercury-197m/g with Sulfur-Rich Macrocyclic Ligands: Towards the Future of Theranostic Radiopharmaceuticals. *Chem. – Eur. J.* 2023, 29 (21), e202203815. https://doi.org/10.1002/chem.202203815.