Electronic Supporting Information

Ni(II)-dithiocarbamate and -diphosphine coordination complexes as pre-catalysts for electrochemical OER activity

Sarvesh Kumar Pal^a, Toufik Ansari^b, Chote Lal Yadav^a, Nanhai Singh^a. Prem Lama^{c*}, Arindam

Indra^{b*}, Kamlesh Kumar^{a*}

^a Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India

^bDepartment of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi-221005, India

^cCSIR-Indian Institute of Petroleum, Nanocatalysis Area, LSP Division, Mohkampur, Dehradun-248005, India

Email Address of Corresponding Authors: <u>kamlesh.kumar@bhu.ac.in</u> (Kamlesh Kumar)

arindam.chy@iitbhu.ac.in (Arindam Indra), prem.lama@iip.res.in (Prem Lama)

S No.	Contents			
Fig. S1a-S1d	FT-IR spectra of complexes 1-4.			
Fig. S2a-S2p	1 H, 13 C{ 1 H}, 31 P{ 1 H}, 19 F{ 1 H} spectra of complexes 1-4 .			
Fig. S3	UV-Vis absorption spectra of dithiocarbamate (KL1-KL2) and	12		
	diphosphine (dppe, dppf) ligands.			
Fig. S4	CV profiles of electrochemical activation of complex 1-4 .			
Fig. S5	CV profiles of anodically activated complexes 1-4@CC .			
Fig. S6	EIS curves.			
Fig. S7	Determination of C_{dl} .	14		
Fig. S8	Redox peak integration for the determination of the number of active			
	sites.			
Fig. S9	FT-IR, Powder XRD patterns, and Raman spectra of active catalyst			
	derived from complex 4 after OER catalysis.			
Fig. S10	PXRD patterns of active catalysts derived from synthesized complexes			
	1-4@CC after 100 CV cycles.			
Fig. S11	XPS spectrum of complex 4 before catalysis.			
Fig. S12	XPS spectrum of active catalyst derived from complex 4 after catalysis.			
Fig. S13	CVs of complexes 1–4 in acetonitrile solution.			
Fig. S14	UV-Vis. spectra of dppf, electrolyte solution, KL2 ligand, complex 4 before and after CA.			
Equation S1	Determination of the number of active sites.			
Equation S2	Determination of turn over frequency (TOF).			
Equation S3	Calculation of exchange current density.			
Table S1.	A literature survey table of related Ni(II)-based catalysts.	23		

Fig. S1a: FT-IR spectrum of complex 1.

Fig. S1b: FT-IR spectrum of complex 2.

Fig. S1c: FT-IR spectrum of complex 3.

Fig. S1d: FT-IR spectrum of complex 4.

4.73

2.72

Fig. S2b: ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, CDCl₃) of complex 1.

Fig. S2c: ³¹P{¹H} NMR spectrum (202 MHz, CDCl₃) of complex **1**.

Fig. S2f: ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, CDCl₃) of complex **2**.

Fig. S2h: ${}^{19}F{}^{1}H$ NMR spectrum (470 MHz, CDCl₃) of complex **2**.

Fig. S2j: ${}^{13}C{}^{1}H$ NMR spectrum (125 MHz, CDCl₃) of complex 3.

Fig. S2l: ${}^{19}F{}^{1}H$ NMR spectrum (470 MHz, CDCl₃) of complex **3**.

-8.51 -8.55 -7.79 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.76 -7.78 -7.78 -7.79 -7.70 -3.47

4,4,4 8,8,4 -1.61

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Fig. S2n: ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃) of complex 4.

Fig. S2p: ${}^{19}F{}^{1}H{}$ NMR spectrum (470 MHz, CDCl₃) of complex 4.

Fig. S3 UV-Vis absorption spectra of dithiocarbamate (**KL1-KL2**) in methanol, and diphosphine (dppe, dppf) ligands in dichloromethane solution at 10⁻⁵ and 10⁻³ molar concentration.

Fig. S4: CV profiles for the electrochemical activation of (a) complex 1; (b) complex 2; (c) complex 3; and (d) complex 4 (scan rate 20 mV s⁻¹, without *iR* correction).

Fig. S5: CV profiles of anodically activated complexes 1- 4@CC.

Fig. S6: EIS curves showing the lowest charge transfer resistance for the active catalyst derived from complex **4** compared to active catalysts derived from complexes **1-3**.

Fig. S7: CV of the activated complexes in the non-faradaic potential region with the variation in the scan rate and the determination of C_{dl} in 1.0 M KOH solution.

Fig. S8: Redox peak integration for the determination of number of active sites for the active catalyst derived from complexes **1-4**.

Equation S1. Determination of the number of active sites

The number of active sites in the catalysts was calculated by the redox peak integration method.

Complex 4:

Calculated area associated with the oxidation peak = 0.181×10^{-3} V A

Hence the associated charge was = 0.181 \times 10^{-3} V A/ 0.005 V s^{-1}

$$= 36.2 \times 10^{-3} \text{ As}$$

$$= 36.2 \times 10^{-3} \text{ C}$$

Now, the number of electron transferred was = $36.2 \times 10^{-3} \text{ C}/1.602 \times 10^{-19} \text{ C}$

The number of electron calculated above was same as the number of surface active site due to single electron transfer involving Ni²⁺ to Ni³⁺ oxidation process Hence,

The surface active site of 4 that participated in OER = 22.48×10^{16}

Complex 3:

Calculated area associated with the oxidation peak = 0.156×10^{-3} V A

Hence the associated charge was = 0.156×10^{-3} V A/ 0.005 V s⁻¹

 $= 31.2 \times 10^{-3} \text{ As}$ = $31.2 \times 10^{-3} \text{ C}$

Now, the number of electron transferred was = $31.2 \times 10^{-3} \text{ C}/1.602 \times 10^{-19} \text{ C}$

 $= 19.47 \times 10^{16}$

The number of electron calculated above was same as the number of surface active site due to single electron transfer involving Ni²⁺ to Ni³⁺ oxidation process

Hence,

The surface-active site of 3 that participated in OER =19.47 $\times 10^{16}$

Complex 2:

Calculated area associated with the oxidation peak = 0.140×10^{-3} V A Hence the associated charge was = 0.140×10^{-3} V A/ 0.005 V s⁻¹

 $= 28 \times 10^{-3}$ As

 $= 20 \times 10^{-3} \text{ C}$

Now, the number of electron transferred was = $28 \times 10^{-3} \text{ C}/1.602 \times 10^{-19} \text{ C}$

$\textbf{17.47} \times \textbf{10}^{16}$

The number of electron calculated above was same as the number of surface active site due to single electron transfer involving Ni^{2+} to Ni^{3+} oxidation process

Hence,

The surface-active site of 2 that participated in OER = 17.47×10^{16}

Complex 1:

Calculated area associated with the oxidation peak = $0.056 \times 10^{-3} \text{ V A}$

Hence the associated charge was = 0.056×10^{-3} V A/ 0.005 V s⁻¹

 $= 11.2 \times 10^{-3}$ As

$$= 11.2 \times 10^{-3}$$
 C

Now, the number of electron transferred was = $11.2 \times 10^{-3} \text{ C}/1.602 \times 10^{-19} \text{ C}$

$= 6.99 \times 10^{16}$

The number of electron calculated above was the same as the number of the surface-active sites due to single electron transfer involving Ni^{2+} to Ni^{3+} oxidation process

Hence,

The surface-active site of 1 that participated in OER = 6.99×10^{16}

Equation S2. Determination of Turn-Over Frequency (TOF)

The TOF of the complexes can be determined using the equation $TOF = (j \times N_A)/(4 \times F \times n)$ Where, j = current density at 1.48 V vs. RHE $N_A = Avogadro$ number F = Faraday constant n = number of active Ni-sites

For Complex 4:

$$\begin{split} TOF &= (10 \times 10^{-3}) \ (6.023 \times 10^{23}) / (96485) \times (4) \times (22.\ 48 \times 10^{16}) \\ \textbf{TOF} &= 6.94 \times 10^{-2} \ s^{-1} \end{split}$$

For Complex 3:

 $\begin{aligned} \text{TOF} &= (4.02 \times 10^{-3}) \ (6.023 \times 10^{23}) / (96485) \times (4) \times (19.47 \times 10^{16}) \\ \text{TOF} &= 3.38 \times 10^{-2} \ \text{s}^{-1} \end{aligned}$

For Complex 2:

TOF = (1.48×10^{-3}) (6.023 × 10²³)/(96485) × (4) × (17.47 × 10¹⁶) TOF = 1.32×10^{-2} s⁻¹

For Complex 1:

TOF = (0.82×10^{-3}) (6.023 × 10²³)/(96485) × (4) × (6.99 × 10¹⁶) TOF = $1.78 \times 10^{-2} \text{ s}^{-1}$

Equation S3: Calculation of exchange current density

The exchange current density of the complexes can be determined using the equation (J.

Energy Chem., 2022, 67, 101-137)

 $J_{\theta} = RT/nFR_{\rm ct}$

Where, $\mathbf{R} = \text{gas constant} (8.314 \text{ J mol}^{-1} \text{ K}^{-1})$

T= temperature (298 K)

 \mathbf{n} = number of electron transfer

 \mathbf{F} = Faraday's constant (96485 C mol⁻¹)

 R_{ct} = charge transfer resistance (obtained from EIS)

Active catalysts from	$R_{\rm ct}$ value (Ω)	Exchange current density (A cm ⁻²)
Complex 1@CC	21.63	2.9×10^{-4}
Complex 2@CC	14.42	4.4×10^{-4}
Complex 3 @CC	10.92	5.8×10^{-4}
Complex 4@CC	9.03	7.1 × 10 ⁻⁴

Fig. S9. (a) The FT-IR spectrum of active catalyst derived from complex 4@CC after 500 CV cycles shows new peaks at 828 cm⁻¹ and 434 cm⁻¹, which are attributed to the Ni–O bond stretching; (b) The powder XRD pattern of active catalyst derived from complex 4@CC after 500 CV cycles indicates that the molecular structure has disappeared and transformed into Ni(OH)₂/Ni(O)OH- β-Fe(O)OH. (c) The Raman spectra of complex 4 before and after the 500 CV cycles also demonstrate structural reconstruction. The appearance of two peaks at 487 cm⁻¹ and 545 cm⁻¹ confirms the formation of Ni(OH)₂/Ni(O)OH, while the peaks at 331 cm⁻¹ and 385 cm⁻¹ demonstrate the β-phase of Fe(O)OH. (*Adv. Energy Mater.*, 2022, **12**, 2103383)

Fig. S10: The powder XRD patterns of active catalysts derived from complexes 1-4@CC after 100 CV cycles. It was observed that the molecular structures had transformed into Ni(OH)₂/Ni(O)OH (JCPDS No. 38-0715 and 6-0141). With complexes 1 and 3, only Ni(OH)₂ peaks were detected, while with complexes 2 and 4, both Ni(OH)₂ and Ni(O)OH peaks were observed. This suggests that complexes 1 and 3 were activated to Ni(OH)₂ as active catalyst, whereas complexes 2 and 4 were activated to both Ni(OH)₂ and Ni(O)OH as active catalyst. Additionally, the peaks for β -phase of Fe(O)OH (JCPDS No. 34-1266) were also detected in the active catalysts derived from complexes 3 and 4.

Fig. S11: XPS of synthesized complex **4**. (**a**) Ni 2p XPS showing the peaks at 853.19 eV and 870.53 eV assigned for the Ni $2p_{3/2}$ and Ni $2p_{1/2}$, respectively. The peak at 853.93 eV was attributed to Ni²⁺ species; (**b**) Fe 2p XPS showing the peaks at 706.81 eV and 719.65 eV assigned for the Fe $2p_{3/2}$ and Fe $2p_{1/2}$, respectively; (**c**) S 2p XPS indicating two peaks at 161.13 eV and 162.49 eV attributed to the S $2p_{3/2}$ and S $2p_{1/2}$, respectively; (**d**) P 2p XPS showing three peaks at 136.21 eV, 132.05 eV, and 130.55 eV, the peaks at 130.55 eV, and 132.05 eV were attributed to $2p_{3/2}$ and $2p_{1/2}$ while 136.21 eV corresponds to PO_x species; (*J. Chem. Phys.*, 1987, **87**, 5002–5006); (**e**) C 1s XPS showing three peaks at 285.94 eV, 284.75 eV and 283.33 eV corresponded to C-N bond, aromatic C and C-H bond respectively; (**f**) N 1s XPS indicated a peak corresponding to the C–N (398.51 eV) bond.

Fig. S12: XPS of active catalyst derived from complex **4** after 500 CV cycles (**a**) Ni 2p XPS showing the peaks at 853.86 eV, and 872 eV assigned for the Ni $2p_{3/2}$ and Ni $2p_{1/2}$, respectively, the peaks at 853.90 eV and 855.19 eV was attributed to the Ni²⁺ and Ni³⁺ species; (**b**) The Fe 2p XPS of complex displays peaks for Fe $2p_{3/2}$ and Fe $2p_{1/2}$, the peaks cantered at 709.31 eV and 721.60 eV are attributed to Fe²⁺, while peaks at 710.42 eV and 723.18 eV correspond to Fe³⁺; (**c**) S 2p XPS indicating three peaks at 161.21 eV, 162.73 eV, and 163.81 eV attributed to the S $2p_{3/2}$, S $2p_{1/2}$, and SO_x species, respectively; (**d**) P 2p XPS showing three peaks at 129.71 eV, 130.81 eV and 136.32 eV, assigned for P $2p_{3/2}$, P $2p_{1/2}$, and PO_x species, respectively; (**e**) C 1s XPS showing three peaks at 285.10 eV, 283.57 eV, and 282.73 eV

corresponding to C-N bond, aromatic C, and C-H bond, respectively; (f) O 1s XPS indicating two peaks at 530.75 eV and 532.07 corresponding to OH⁻ and Ni-O bond.

Fig. S13: Cyclic voltammograms (CVs) of complexes 1-4 (1 mM) in acetonitrile solution containing 0.1 M TBAPF₆ supporting electrolyte at a scan rate of 100 mV. The glassy carbon electrode (GCE) with a 2 mm diameter served as the working electrode, platinum wire as the counter electrode, and Ag/AgNO₃ as the reference electrode.

Fig. S14: UV-Vis. spectra of dppf, electrolyte solution, KL2 ligand, complex **4** before and after CA.

Catalyst ^a	Electrolyte	Overpotential (mV)	TOF	Reference
Ni[(TMC)(CH ₃ CN)]	Phosphate	590 mV	-	Chem. Commun.,
(NO ₃) ₂	buffer	$@0.5 \text{ mA cm}^{-2}$		2019, 55 , 6122–6125.
$[NiL](PF_6)_2$	Phosphate	270 mV	-	Catal. Sci. Technol.,
	buffer	$@0.65 \text{ mA cm}^{-2}$		2019, 9 , 5651–5659.
Ni–Hmfchce	0.1 KOH	490 mV	-	Polyhedron, 2019,
		$@10 \text{ mA cm}^{-2}$		174 , 114160.
Ni(II)1,1-dithiolate-	1.0 M KOH	350 mV	-	Dalton Trans.,
phosphine		$@10 \text{ mA cm}^{-2}$		2020, 49 , 3592.
Ni-MOG	0.1 M KOH	418 mV	-	ChemCatChem, 2023,
		@10 mA cm ⁻²		15, e202300694.
LaNiO _{2.9} F _{0.1}	1.0 M KOH	320 mV	-	ACS Catal., 2024, 14,
		$@10 \text{ mA cm}^{-2}$		15096-15107.
N-Co-Mo-GF/	0.1 M KOH	330 mV	-	ACS Catal., 2020, 10,
CNT on Ni		$@10 \text{ mA cm}^{-2},$		4647-4658.
		350 mV		
		$@50 \text{ mA cm}^{-2}$		
Ni5P4 Films/Ni foil	1.0 M KOH	150 mV	-	Angew. Chem. Int. Ed.,
		$@10 \text{ mA cm}^{-2}$		2015, 54 , 12361– 12365.
Ni(II)	1.0 M KOH	330 mV	$5.2 \times 10^{-1} \text{ s}^{-1}$	Dalton Trans., 2023,
dithiocarbamate		@10 mA cm ⁻²		52 , 936–946.
α-Ni(OH) ₂	0.1 M KOH	331 mV	3.61×10^{-2}	J. Am. Chem. Soc.,
		$@10 \text{ mA cm}^{-2}$	s^{-1}	2014, 136 , 7077–7084
$(bpy)_z NiO_x H_y (bpy =$	1.0 M NaOH	300 mV	1.1 s^{-1}	ACS Appl. Mater.
2,2'-bipyridine)		$@1.0 \text{ mA cm}^{-2}$		Interfaces, 2021, 13 ,
				48661-48668.
$[Ni(S^S)(P^P)]PF_6$	1.0 M KOH	250 mV	$6.94 \times 10^{-2} \text{ s}^{-1}$	This work
		$@10 \text{ mA cm}^{-2}$		

Table S1. A literature survey table compares the OER performance of related Ni(II)-based catalysts