Electronic Supporting Information

Ni(II)-dithiocarbamate and -diphosphine coordination complexes as pre-catalysts for electrochemical OER activity

Sarvesh Kumar Pal^a, Toufik Ansari^b, Chote Lal Yadav^a, Nanhai Singh^a. Prem Lama^{c*}, Arindam

Indra^{b*}, Kamlesh Kumar^{a*}

^aDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India

^bDepartment of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi-221005, India

^cCSIR-Indian Institute of Petroleum, Nanocatalysis Area, LSP Division, Mohkampur, Dehradun-248005, India

Email Address of Corresponding Authors: kamlesh.kumar@bhu.ac.in (Kamlesh Kumar)

arindam.chy@iitbhu.ac.in (Arindam Indra), prem.lama@iip.res.in (Prem Lama)

 Fig. S1a: FT-IR spectrum of complex **1**.

Fig. S1b: FT-IR spectrum of complex **2**.

Fig. S1c: FT-IR spectrum of complex **3**.

Fig. S1d: FT-IR spectrum of complex **4**.

 (4.73)

 -2.72

Fig. S2b: ¹³C{¹H} NMR spectrum (125 MHz, CDCl3) of complex **1**.

Fig. S2c: ${}^{31}P\{{}^{1}H\}$ NMR spectrum (202 MHz, CDCl₃) of complex 1.

Fig. S2f: ¹³C{¹H} NMR spectrum (125 MHz, CDCl3) of complex **2**.

Fig. S2h: ${}^{19}F\{ {}^{1}H\}$ NMR spectrum (470 MHz, CDCl₃) of complex 2.

Fig. S2l: ${}^{19}F\{ {}^{1}H \}$ NMR spectrum (470 MHz, CDCl₃) of complex **3**.

 -3.47

4 4 4
से 86 4
के 86 4

 -1.61

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 $20[°]$ $10\qquad 0$ 70 $60\,$ 50 40 $30\,$

Fig. S2n: ${}^{13}C[{^1H}]$ NMR spectrum (125 MHz, CDCl₃) of complex 4.

Fig. S2p: ${}^{19}F\{ {}^{1}H \}$ NMR spectrum (470 MHz, CDCl₃) of complex 4.

Fig. S3 UV-Vis absorption spectra of dithiocarbamate (**KL1-KL2)** in methanol, and diphosphine (dppe, dppf) ligands in dichloromethane solution at 10^{-5} and 10^{-3} molar concentration.

Fig. S4: CV profiles for the electrochemical activation of (a) complex **1**; (b) complex **2**; (c) complex 3; and (d) complex 4 (scan rate 20 mV s^{-1} , without i*R* correction).

Fig. S5: CV profiles of anodically activated complexes **1- 4@CC**.

Fig. S6: EIS curves showing the lowest charge transfer resistance for the active catalyst derived from complex **4** compared to active catalysts derived from complexes **1**-**3**.

Fig. S7: CV of the activated complexes in the non-faradaic potential region with the variation in the scan rate and the determination of C_{dl} in 1.0 M KOH solution.

Fig. S8: Redox peak integration for the determination of number of active sites for the active catalyst derived from complexes **1-4**.

Equation S1. **Determination of the number of active sites**

The number of active sites in the catalysts was calculated by the redox peak integration method.

Complex 4:

Calculated area associated with the oxidation peak = 0.181×10^{-3} V A

Hence the associated charge was = 0.181×10^{-3} V A/ 0.005 V s⁻¹

$$
= 36.2 \times 10^{-3} \text{ As}
$$

$$
= 36.2 \times 10^{-3} \, \text{C}
$$

Now, the number of electron transferred was = 36.2×10^{-3} C/1.602 \times 10⁻¹⁹ C

The number of electron calculated above was same as the number of surface active site due to single electron transfer involving Ni^{2+} to Ni^{3+} oxidation process Hence,

The surface active site of 4 that participated in OER = 22.48×10^{16}

Complex 3:

Calculated area associated with the oxidation peak = 0.156×10^{-3} V A

Hence the associated charge was = 0.156×10^{-3} V A/ 0.005 V s⁻¹

 $= 31.2 \times 10^{-3}$ As

 $= 31.2 \times 10^{-3}$ C

Now, the number of electron transferred was = 31.2×10^{-3} C/1.602 \times 10⁻¹⁹ C

 $= 19.47 \times 10^{16}$

The number of electron calculated above was same as the number of surface active site due to single electron transfer involving Ni^{2+} to Ni^{3+} oxidation process

Hence,

The surface-active site of 3 that participated in OER = 19.47×10^{16}

Complex 2:

Calculated area associated with the oxidation peak = 0.140×10^{-3} V A

Hence the associated charge was = 0.140×10^{-3} V A/ 0.005 V s⁻¹

 $= 28 \times 10^{-3}$ As

 $= 20 \times 10^{-3}$ C

Now, the number of electron transferred was = 28×10^{-3} C/1.602 $\times 10^{-19}$ C

17.47×10^{16}

The number of electron calculated above was same as the number of surface active site due to single electron transfer involving Ni^{2+} to Ni^{3+} oxidation process

Hence,

The surface-active site of 2 that participated in OER = 17.47×10^{16}

Complex 1:

Calculated area associated with the oxidation peak = 0.056×10^{-3} V A

Hence the associated charge was = 0.056×10^{-3} V A/ 0.005 V s⁻¹

 $= 11.2 \times 10^{-3}$ As

$$
= 11.2 \times 10^{-3} \text{ C}
$$

Now, the number of electron transferred was = 11.2×10^{-3} C/1.602 \times 10⁻¹⁹ C

$= 6.99 \times 10^{16}$

The number of electron calculated above was the same as the number of the surface-active sites due to single electron transfer involving Ni^{2+} to Ni^{3+} oxidation process

Hence,

The surface-active site of 1 that participated in OER = 6.99×10^{16}

Equation S2. Determination of Turn-Over Frequency (TOF)

The TOF of the complexes can be determined using the equation $TOF = (i \times N_A)/(4 \times F \times n)$ Where, $j =$ current density at 1.48 V vs. RHE N_A = Avogadro number $F = Faraday constant$

 $n =$ number of active Ni-sites

For Complex 4:

TOF = (10×10^{-3}) (6.023×10^{23}) / $(96485) \times (4) \times (22.48 \times 10^{16})$ $TOF = 6.94 \times 10^{-2} \text{ s}^{-1}$

For Complex 3:

TOF = (4.02×10^{-3}) $(6.023 \times 10^{23})/(96485) \times (4) \times (19.47 \times 10^{16})$ $TOF = 3.38 \times 10^{-2} \text{ s}^{-1}$

For Complex 2:

TOF = (1.48×10^{-3}) $(6.023 \times 10^{23})/(96485) \times (4) \times (17.47 \times 10^{16})$ $$

For Complex 1:

TOF = (0.82×10^{-3}) (6.023×10^{23}) / $(96485) \times (4) \times (6.99 \times 10^{16})$ $$

Equation S3: Calculation of exchange current density

The exchange current density of the complexes can be determined using the equation (*J.*

Energy Chem., 2022, **67**, 101-137)

 $J₀ = RT/nFR$ ct

Where, $$

T= temperature (298 K)

- **n** = number of electron transfer
- $\mathbf{F} = \text{Faraday's constant } (96485 \text{ C mol}^{-1})$

 R_{ct} = charge transfer resistance (obtained from EIS)

Fig. S9. **(a)** The FT-IR spectrum of active catalyst derived from complex **4@CC** after 500 CV cycles shows new peaks at 828 cm⁻¹ and 434 cm⁻¹, which are attributed to the Ni-O bond stretching; **(b)** The powder XRD pattern of active catalyst derived from complex **4@CC** after 500 CV cycles indicates that the molecular structure has disappeared and transformed into Ni(OH)₂/Ni(O)OH- β-Fe(O)OH. **(c)** The Raman spectra of complex **4** before and after the 500 CV cycles also demonstrate structural reconstruction. The appearance of two peaks at 487 cm-¹ and 545 cm⁻¹ confirms the formation of Ni(OH)₂/Ni(O)OH, while the peaks at 331 cm⁻¹ and 385 cm-1 demonstrate the β-phase of Fe(O)OH. (*Adv. Energy Mater.,* 2022, **12**, 2103383)

Fig. S10: The powder XRD patterns of active catalysts derived from complexes **1-4@CC** after 100 CV cycles. It was observed that the molecular structures had transformed into Ni(OH)2/Ni(O)OH (JCPDS No. 38-0715 and 6-0141). With complexes **1** and **3**, only Ni(OH)² peaks were detected, while with complexes 2 and 4 , both $Ni(OH)_2$ and $Ni(O)OH$ peaks were observed. This suggests that complexes **1** and **3** were activated to Ni(OH)² as active catalyst, whereas complexes 2 and 4 were activated to both $Ni(OH)_2$ and $Ni(O)OH$ as active catalyst. Additionally, the peaks for β-phase of Fe(O)OH (JCPDS No. 34-1266) were also detected in the active catalysts derived from complexes **3** and **4**.

Fig. S11: XPS of synthesized complex **4**. **(a)** Ni 2p XPS showing the peaks at 853.19 eV and 870.53 eV assigned for the Ni $2p_{3/2}$ and Ni $2p_{1/2}$, respectively. The peak at 853.93 eV was attributed to Ni^{2+} species; **(b)** Fe 2p XPS showing the peaks at 706.81 eV and 719.65 eV assigned for the Fe 2p3/2 and Fe 2p1/2, respectively; **(c)** S 2p XPS indicating two peaks at 161.13 eV and 162.49 eV attributed to the S $2p_{3/2}$ and S $2p_{1/2}$, respectively; **(d)** P $2p$ XPS showing three peaks at 136.21 eV, 132.05 eV, and 130.55 eV, the peaks at 130.55 eV, and 132.05 eV were attributed to $2p_{3/2}$ and $2p_{1/2}$ while 136.21 eV corresponds to PO_x species; (*J. Chem.*) *Phys.,*1987, **87**, 5002–5006) ; **(e)** C 1s XPS showing three peaks at 285.94 eV, 284.75 eV and 283.33 eV corresponded to C-N bond, aromatic C and C-H bond respectively; **(f)** N 1s XPS indicated a peak corresponding to the C–N (398.51 eV) bond.

Fig. S12: XPS of active catalyst derived from complex **4** after 500 CV cycles **(a)** Ni 2p XPS showing the peaks at 853.86 eV, and 872 eV assigned for the Ni $2p_{3/2}$ and Ni $2p_{1/2}$, respectively, the peaks at 853.90 eV and 855.19 eV was attributed to the Ni^{2+} and Ni^{3+} species; **(b)** The Fe 2p XPS of complex displays peaks for Fe $2p_{3/2}$ and Fe $2p_{1/2}$, the peaks cantered at 709.31 eV and 721.60 eV are attributed to Fe^{2+} , while peaks at 710.42 eV and 723.18 eV correspond to Fe3+ ; **(c)** S 2p XPS indicating three peaks at 161.21 eV, 162.73 eV, and 163.81 eV attributed to the S $2p_{3/2}$, S $2p_{1/2}$, and SO_x species, respectively; **(d)** P $2p$ XPS showing three peaks at 129.71 eV, 130.81 eV and 136.32 eV, assigned for P $2p_{3/2}$, P $2p_{1/2}$, and PO_x species, respectively; **(e)** C 1s XPS showing three peaks at 285.10 eV, 283.57 eV, and 282.73 eV

corresponding to C-N bond, aromatic C, and C-H bond, respectively; **(f)** O 1s XPS indicating two peaks at 530.75 eV and 532.07 corresponding to OH-and Ni-O bond.

Fig. S13: Cyclic voltammograms (CVs) of complexes **1–4 (**1 mM) in acetonitrile solution containing 0.1 M TBAPF₆ supporting electrolyte at a scan rate of 100 mV. The glassy carbon electrode (GCE) with a 2 mm diameter served as the working electrode, platinum wire as the counter electrode, and Ag/AgNO₃ as the reference electrode.

Fig. S14: UV-Vis. spectra of dppf, electrolyte solution, KL2 ligand, complex **4** before and after CA.

Table S1. A literature survey table compares the OER performance of related Ni(II)-based catalysts