SUPPLEMENTARY INFORMATION

Extended investigation of the conductive characteristics of monoclinic tungstates with a $Bi_{3,24}Ln_2W_{0,76}O_{10,14}$ (*Ln* = La, Pr or Nd) composition AUTHOR ADDRESS Ekaterina I. Orlova^a, Yelizaveta A. Morkhova^{*b,c}, Nikolay V. Lyskov^{d,e}, Anastasia V. Egorova^{f,g}, Egor D. Baldin^h, Artem A. Kabanovⁱ, Elena P. Kharitonova^a, Valentina I. Voronkova^a ^aLomonosov Moscow State University, Faculty of Physics, 119991 Moscow, Russia ^bSamara State Technical University, 443100 Samara, Russia ^cLaboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, 184209, Apatity, Russia ^dFederal Research Center of Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences, 142432 Chernogolovka, Russia ^eHSE University, 101000 Moscow, Russia ^fUral Federal University, 620000 Yekaterinburg, Russia ^gLaboratory of Selectively Permeable Ceramics and Engineering, Institute of Solid State Chemistry of UB RAS, 620041 Yekaterinburg, Russia ^hN.N. Semenov Federal Research Center For Chemical Physics RAS, Kosygina 4, Moscow, 119991, Russian Federation ⁱP. N. Lebedev Physical Institute of the Russian Academy of Sciences, 443011 Samara, Russia * eliztimofeeva@mail.ru

Fig. S1. Powder XRD patterns of (1) $Bi_{3.24}La_2W_{0.76}O_{10.14}$ (BLW) ceramics and (2) the $Bi_{3.24}La_2W_{0.76}O_{10.14}$ (BLW) sample powder mixed with corn starch in a 1:1 volume ratio.

Fig. S2. Photograph of $Bi_{3.24}Pr_2W_{0.76}O_{10.14}$ (BPW) ceramics in daylight.

Fig. S3. (a) The BPW ceramics SEM micrograph, test area; (b) Bi element mapping; (c) Pr element mapping; (d) W element mapping; (e) O element mapping.

Fig. S4. (a) The BNW ceramics SEM micrograph, test area; (b) Bi element mapping; (c) Nd element mapping; (d) W element mapping; (e) O element mapping.

Fig. S5. Proton migrations from the BVSE approach in the $Bi_{3.24}Ln_2W_{0.76}O_{10.14}$ (*Ln* = La, Pr or Nd) with 1.5 maximum possible water molecules (0.75 per formula unit).

Figure S6. Impedance hodographs of the (a) $Bi_{3.24}La_2W_{0.76}O_{10.14}$ (BLW), (b) $Bi_{3.24}Pr_2W_{0.76}O_{10.14}$ (BPW) and (c) $Bi_{3.24}Nd_2W_{0.76}O_{10.14}$ (BNW) ceramics in a dry and humid atmosphere at 450 °C.

Fig. S7. Total conductivity oxygen partial pressure $p(O_2)$ dependences of the (a) Bi_{3.24}La₂W_{0.76}O_{10.14} (BLW), (b) Bi_{3.24}Pr₂W_{0.76}O_{10.14} (BPW) and (c) Bi_{3.24}Nd₂W_{0.76}O_{10.14} (BNW) ceramics.

Table S1.	Equivalent circuit fit parameters for the complex impedance plots of the BLW,	BPW,
	BNW samples in a dry and wet atmosphere at 450 °C.	

	Bulk			Grain boundary		
Sample	R1,	CPE1,	<i>СРЕ1,</i> Р	$B_2 Obmy 106$	CDE2 TV10-8	
	Ohm×10 ⁶	T×10 ⁻¹¹		<i>CPE1</i> , P		$CPE2, 1\times 10^{-5}$
BLW (dry air)	0.05±0.01	1.78±0.05	1.01±0.01	0.09±0.01	1.30±0.05	0.56±0.01
BLW (wet air)	0.05±0.01	1.75±0.05	1.01±0.01	0.09±0.01	0.94±0.05	0.60±0.01
BPW (dry air)	0.13±0.01	3.37±0.05	0.91±0.01	-	-	-
BPW (wet air)	0.14±0.01	3.47±0.05	0.91±0.01	-	-	-
BNW (dry air)	0.42±0.01	2.96±0.05	0.92±0.01	-	-	-
BNW (wet air)	0.47±0.01	3.93±0.05	0.90±0.01	-	-	-