Electronic Supplementary Information for

Heteroleptic Mononuclear Cu(I) Halide Complexes

Containing Carbazolyl Substituted Phenyl Diphosphine and

Monophosphine: Structures, Photophysical and

Electroluminescent Properties

Zhun Chen^{a,1}, Wei Xu^{a,1}, Ruiqin Zhu^{b,1}, Li Liu^{a,*}, Xin-Xin Zhong^{a,*}, Fa-Bao Li^{a,*},

Guijiang Zhou^{b,*}, Hai-Mei Qin^c

^a College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China. E-mail: liulihubei@hubu.edu.cn, xxzhong@hubu.edu.cn, lfb0615@hubu.edu.cn

^b School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China. Email: zhougj@mail.xjtu.edu.cn

^c Department of Chemistry, Xiamen University, Xiamen 361005, P. R. China.

¹ These authors are contributed equally to this work.

CCDC: 2284138-2284139, 2282048-2282050, 2285410, 2323092

Contents

- 1. General Information
- 2. NMR and mass spectra

Figure S1. ¹H NMR spectrum of DCzP in CDCl₃.

Figure S2. ¹³C NMR spectrum of DCzP in CDCl₃.

Figure S3. ³¹P NMR spectrum of DCzP in CDCl₃.

Figure S4. ¹H NMR spectrum of 1 in CDCl₃.

Figure S5. ³¹P NMR spectrum of 1 in CDCl₃.

Figure S6. ¹H NMR spectrum of 2 in CDCl₃.

Figure S7. ³¹P NMR spectrum of 2 in CDCl₃.

- Figure S8. ¹H NMR spectrum of 3 in CDCl₃.
- Figure S9. ³¹P NMR spectrum of **3** in CDCl₃.
- Figure S10. ¹H NMR spectrum of 4 in CDCl₃.
- Figure S11. ³¹P NMR spectrum of 4 in CDCl₃.
- Figure S12. ¹H NMR spectrum of 5 in CDCl₃.
- Figure S13. ³¹P NMR spectrum of 5 in CDCl₃.
- Figure S14. ¹H NMR spectrum of 6 in CDCl₃.
- Figure S15. ³¹P NMR spectrum of 6 in CDCl₃.
- Figure S16. ¹H NMR spectrum of 7 in CDCl₃.
- Figure S17. ³¹P NMR spectrum of 7 in CDCl₃.
- Figure S18. Mass spectrum of DCzP.
- Figure S19. Mass spectrum of 1
- Figure S20. Mass spectrum of 2
- Figure S21. Mass spectrum of 3.
- Figure S22. Mass spectrum of 4.
- Figure S23. Mass spectrum of 5.
- Figure S24. Mass spectrum of 6.
- Figure S25. Mass spectrum of 7.
- 3. Molecular structures
- Figure S26. Intermolecular $Br \cdots H$ (CH₂Cl₂) interaction in 1.

Figure S27. Intermolecular Cl···H (CH₂Cl₂), Cl···H (phenyl) and Cl ···C (phenyl) interactions in **2**.

- Figure S28. Intermolecular I···H (CH₃) interaction in 3.
- Figure S29. Intermolecular Br…H (CH₃) interaction in 4.
- Figure S30. Intermolecular Cl····H (CH₃) interaction in 5.
- Figure S31. Intermolecular I···H (phenyl), I ···H (CH₂Cl₂) interactions in 6.
- 4. Photophysical properties

Figure S32. Normalized excitation spectra of 1–7 in powder at 297 K ($\lambda_{em} = 531$ nm for 1, $\lambda_{em} = 555$ nm for 2, $\lambda_{em} = 560$ nm for 3, $\lambda_{em} = 535$ nm for 4, $\lambda_{em} = 558$ nm for 5,

 $\lambda_{em} = 556 \text{ nm for } 6, \lambda_{em} = 557 \text{ nm for } 7).$

Figure 33. Time profiles of luminescence decay and exponential fit spectrum of 1 at 297 K ($\lambda_{em} = 531$ nm).

Figure S34. Time profiles of luminescence decay and exponential fit spectrum of **2** at 297 K ($\lambda_{em} = 555$ nm).

Figure S35. Time profiles of luminescence decay and exponential fit spectrum of **3** at 297 K ($\lambda_{em} = 560$ nm).

Figure S36. Time profiles of luminescence decay and exponential fit spectrum of 4 at 297 K ($\lambda_{em} = 535$ nm).

Figure S37. Time profiles of luminescence decay and exponential fit spectrum of 5 at 297 K ($\lambda_{em} = 558$ nm).

Figure S38. Time profiles of luminescence decay and exponential fit spectrum of 6 at 297 K ($\lambda_{em} = 556$ nm).

Figure S39. Time profiles of luminescence decay and exponential fit spectrum of 7 at 297 K ($\lambda_{em} = 557$ nm).

Figure S40. Time profiles of luminescence decay and exponential fit spectrum of 1 at 77 K ($\lambda_{em} = 548$ nm).

Figure S41. Time profiles of luminescence decay and exponential fit spectrum of 2 at 77 K ($\lambda_{em} = 557$ nm).

Figure S42. Time profiles of luminescence decay and exponential fit spectrum of 3 at 77 K ($\lambda_{em} = 547$ nm).

Figure S43. Time profiles of luminescence decay and exponential fit spectrum of 4 at 77 K ($\lambda_{em} = 524$ nm).

Figure S44. Time profiles of luminescence decay and exponential fit spectrum of 5 at 77 K ($\lambda_{em} = 547$ nm).

Figure S45. Time profiles of luminescence decay and exponential fit spectrum of 6 at 77 K ($\lambda_{em} = 545$ nm).

Figure S46. Time profiles of luminescence decay and exponential fit spectrum of 7 at 77 K ($\lambda_{em} = 546$ nm).

5. Computational details

Figure S47. Compositions of the frontier molecular orbitals at optimized S₀ geometry

of complex 1.

Figure S48. Compositions of the frontier molecular orbitals at optimized S_0 geometry of complex 2.

Figure S49. Compositions of the frontier molecular orbitals at optimized S_0 geometry of complex 3.

Figure S50. Compositions of the frontier molecular orbitals at optimized S_0 geometry of complex 4.

Figure S51. Compositions of the frontier molecular orbitals at optimized S_0 geometry of complex 5.

Figure S52. Compositions of the frontier molecular orbitals at optimized S_0 geometry of complex 6.

Figure S53. Compositions of the frontier molecular orbitals at optimized S_0 geometry of complex 7.

Figure S54. Compositions of the frontier natural transition orbitals at optimized S_1 geometry of complex 1.

Figure S55. Compositions of the frontier natural transition orbitals at optimized S_1 geometry of complex 2.

Figure S56. Compositions of the frontier natural transition orbitals at optimized S_1 geometry of complex 3.

Figure S57. Compositions of the frontier natural transition orbitals at optimized S_1 geometry of complex 4.

Figure S58. Compositions of the frontier natural transition orbitals at optimized S_1 geometry of complex 5.

Figure S59. Compositions of the frontier natural transition orbitals at optimized S_1 geometry of complex 6.

Figure S60. Compositions of the frontier natural transition orbitals at optimized S_1 geometry of complex 7.

Figure S61. Compositions of the frontier natural transition orbitals at optimized T_1 geometry of complex 1.

Figure S62. Compositions of the frontier natural transition orbitals at optimized T_1 geometry of complex 2.

Figure S63. Compositions of the frontier natural transition orbitals at optimized T_1 geometry of complex 3.

Figure S64. Compositions of the frontier natural transition orbitals at optimized T_1

geometry of complex 4.

Figure S65. Compositions of the frontier natural transition orbitals at optimized T_1 geometry of complex 5.

Figure S66. Compositions of the frontier natural transition orbitals at optimized T_1 geometry of complex 6.

Figure S67. Compositions of the frontier natural transition orbitals at optimized T_1 geometry of complex 7.

Figure S68. The core structures in the optimized S_0 , S_1 , and T_1 geometries for complexes 1–7.

Table S1. Crystallographic data and details for complexes 1–7.

Table S2. Computed excitation states for complex 1 in CH_2Cl_2 .

Table S3. Computed excitation states for complex 2 in CH_2Cl_2 .

Table S4. Computed excitation states for complex 3 in CH_2Cl_2 .

Table S5. Computed excitation states for complex 4 in CH_2Cl_2 .

Table S6. Computed excitation states for complex 5 in CH_2Cl_2 .

Table S7. Computed excitation states for complex 6 in CH_2Cl_2 .

Table S8. Computed excitation states for complex 7 in CH₂Cl₂.

6. References

1. General information

All chemicals were purchased from commercial sources and used without being processed unless specified. Triphenylphosphine (PPh₃) was purchased from Energy Chemical Co. 1,2-bis(9-carbazolyl)-4,5-bis(diphenylphosphino)benzene (**DCzDP**) and 3-(diphenylphosphino)-9-methylcarbazole (**CzP**) were synthesized according to the literature methods.^{1,2} Tetrahydrofuran (THF) was distilled under nitrogen in the presence of sodium chips with benzophenone as the indicator before use.

Instrumentation. ¹H, ¹³C and ³¹P NMR spectra were recorded on a Varian 400 MHz NMR spectrometer using deuterated solvents as the lock. Chemical shifts were reported in ppm relative to SiMe₄ for the ¹H, CDCl₃ for the ¹³C, and 85% H₃PO₄ for the ³¹P nucleus. High resolution mass spectra (HRMS) were recorded on the Thermo Scientific Exactive Plus equipped with ESI ionization source. The elemental composition was determined with SEM/EDS (Hitachi SU-800 FE-SEM). UV–vis absorption was recorded by a Unicam Helios α spectrometer. Emission spectra and lifetimes of the complexes were measured using Edinburgh instrument FLS980 steady-state and time resolved fluorescence spectrometer (375 nm variable pulsed diode laser, repetition frequencies 1000 Hz, and optical pulse period 100 ns). Solidstate Φ_{PL} values were determined using a Hamamatsu system for absolute PL quantum yield measurements equipped with an integrating sphere with Spectralon inner surface coating.

X-ray crystallography. Crystals of complexes 1–7 suitable for X-ray diffraction studies were grown by slow evaporation of CH_2Cl_2/n -hexane for 1–3, CH_2Cl_2/CH_3CN for 4–6, CH_2Cl_2/C_2H_5OH for 7 at room temperature. Geometric and intensity data were collected using Cu K α radiation ($\lambda = 1.54184$ Å) on a XtaLAB Synergy, Dualflex, HyPix area detector. The collected frames were processed with the software *SAINT*³, and an absorption correction was applied (*SADABS*)⁴ to the collected reflections. The structures were solved by direct methods (*SHELXTL*)⁵ in conjunction with standard difference Fourier techniques and subsequently refined by full-matrix least-squares analyses on F^2 . All non-hydrogen atoms were assigned with anisotropic displacement parameters.

Theoretical calculations. The structural parameters for complexes 1-7 were obtained from the crystal data which are listed in Tables 1 and S1. The corresponding groundstate (S_0) geometries were all optimized at theoretical level of B3LYP-D3(BJ)/6-311+G(d,p) (LANL2D2 for Cu and I atoms), where D3(BJ) was Grimme's D3 dispersion correction with Becke-Jonson damping. To calculate the adiabatic excitation energies, the optimized geometries of S_1 and T_1 are required, which were obtained at theoretical levels of TD-B3LYP-D3(BJ)/6-31+G(d) and UB3LYP-D3(BJ)/6-311+G(d,p) (LANL2D2 for Cu and I atoms), respectively. The absorption spectra based on the optimized S₀ geometries were obtained at the TD-B3LYP-D3(BJ)/6-311+G(d,p) (LANL2D2 for Cu and I atoms) level. In addition, the solvent effects were taken into account by the polarizable continuum model (PCM, solvent = dichloromethane) for the purpose of comparing with the experimental spectra. All the calculations were manipulated by the Gaussian 16 suite.⁶ The compositions of the frontier molecular and natural transition orbitals at optimized S₀, S₁ and T₁ geometries of complex 1-7 were calculated by the Multiwfn program.^{7,8}

Device fabrication. The pre-cleaned ITO glass substrates were treated with ozone for 20 min. Then, hole-injection layer of the PEDOT:PSS was spin-coated and cured at 120 °C for 30 min in the air. The emission layer was obtained by spin-coating a chloroform solution of complex **4** (x wt%) in 26DCzppy and TCTA (6:4) at different doping levels. After drying in a vacuum oven at 60 °C for 10 min, DPEPO, TmPyPB, LiF, and Al cathode were successively evaporated on the emission layer at a base pressure less than 10–6 Torr. The EL spectra were recorded with a PR650 spectra colorimeter. The J–V–L curves of the devices were measured by a Keithley 2400/2000 source meter. All the experiments and measurements were carried out under ambient conditions.

2. NMR and mass spectra

 δ = 5.30 (dichloromethane), 1.56 (H₂O), 0.88 and 1.26 (petroleum ether or hexane)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S2. ¹³C NMR spectrum of DCzP in CDCl₃.

Figure S3. ³¹P NMR spectrum of DCzP in CDCl₃.

---0.00

$\begin{array}{c} 7.93\\ 7.87\\ 7.87\\ 7.86\\ 7.73\\ 7.71\\ 7.73\\$

Figure S5. ³¹P NMR spectrum of 1 in CDCl₃.

--0.00

Figure S6. ¹H NMR spectrum of 2 in CDCl₃.

---8.60

-2.33

Figure S7. ³¹P NMR spectrum of 2 in CDCl₃.

---0.00

$\begin{array}{c} 7.90\\ 7.78\\ 7.78\\ 7.72\\ 7.72\\ 7.73\\$

Figure S9. ³¹P NMR spectrum of 3 in CDCl₃.

Figure S10. ¹H NMR spectrum of 4 in CDCl₃.

Figure S11. ³¹P NMR spectrum of 4 in CDCl₃.

--0.00

$\begin{array}{c} 8.00\\ 7.787\\ 7.88\\ 7.786\\ 7.737\\ 7.73\\ 7.$

Figure S17. ³¹P NMR spectrum of 7 in CDCl₃.

Figure S18. Mass spectrum of DCzP.

Figure S19. Mass spectrum of 1.

Figure S20. Mass spectrum of 2.

Figure S21. Mass spectrum of 3.

Figure S22. Mass spectrum of 4.

Figure S23. Mass spectrum of 5.

Figure S24. Mass spectrum of 6.

Figure S25. Mass spectrum of 7.

3. Molecular structures

Figure S26. Intermolecular $Br \cdots H$ (CH_2Cl_2) interaction in 1.

Figure S27. Intermolecular $Cl \cdots H (CH_2Cl_2), Cl \cdots H (phenyl)$ and $Cl \cdots C (phenyl)$ interactions in 2.

Figure S28. Intermolecular I····H (CH₃) interaction in 3.

Figure S29. Intermolecular $Br \cdots H$ (CH₃) interaction in 4.

Figure S30. Intermolecular Cl····H (CH₃) interaction in 5.

Figure S31. Intermolecular I \cdots H (phenyl), I \cdots H (CH₂Cl₂) interactions in 6.

4. Photophysical properties

Figure S32. Normalized excitation spectra of 1–7 in powder at 297 K ($\lambda_{em} = 531$ nm for 1, $\lambda_{em} = 555$ nm for 2, $\lambda_{em} = 560$ nm for 3, $\lambda_{em} = 535$ nm for 4, $\lambda_{em} = 558$ nm for 5, $\lambda_{em} = 556$ nm for 6, $\lambda_{em} = 557$ nm for 7).

Figure 33. Time profiles of luminescence decay and exponential fit spectrum of 1 at 297 K ($\lambda_{em} = 531$ nm).

Figure S34. Time profiles of luminescence decay and exponential fit spectrum of 2 at 297 K ($\lambda_{em} = 553$ nm).

Figure S35. Time profiles of luminescence decay and exponential fit spectrum of 3 at 297 K ($\lambda_{em} = 555$ nm).

Figure S36. Time profiles of luminescence decay and exponential fit spectrum of 4 at 297 K ($\lambda_{em} = 534$ nm).

Figure S37. Time profiles of luminescence decay and exponential fit spectrum of 5 at 297 K ($\lambda_{em} = 557$ nm).

Figure S38. Time profiles of luminescence decay and exponential fit spectrum of 6 at 297 K ($\lambda_{em} = 556$ nm).

Figure S39. Time profiles of luminescence decay and exponential fit spectrum of 7 at 297 K ($\lambda_{em} = 558 \text{ nm}$).

Figure S40. Time profiles of luminescence decay and exponential fit spectrum of 1 at 77 K ($\lambda_{em} = 547$ nm).

Figure S41. Time profiles of luminescence decay and exponential fit spectrum of 2 at 77 K ($\lambda_{em} = 556$ nm).

Figure S42. Time profiles of luminescence decay and exponential fit spectrum of 3 at 77 K ($\lambda_{em} = 547$ nm).

Figure S43. Time profiles of luminescence decay and exponential fit spectrum of 4 at 77 K ($\lambda_{em} = 525$ nm).

Figure S44. Time profiles of luminescence decay and exponential fit spectrum of 5 at 77 K ($\lambda_{em} = 549$ nm).

Figure S45. Time profiles of luminescence decay and exponential fit spectrum of 6 at 77 K ($\lambda_{em} = 545$ nm).

Figure S46. Time profiles of luminescence decay and exponential fit spectrum of 7 at 77 K ($\lambda_{em} = 548$ nm).

5. Computational details

Figure S47. Compositions of the frontier molecular orbitals at optimized S_0 geometry of complex 1.

Figure S48. Compositions of the frontier molecular orbitals at optimized S_0 geometry of complex 2.

Figure S49. Compositions of the frontier molecular orbitals at optimized S_0 geometry of complex 3.

Figure S50. Compositions of the frontier molecular orbitals at optimized S_0 geometry of complex 4.

Figure S51. Compositions of the frontier molecular orbitals at optimized S₀ geometry of complex 5.

Figure S52. Compositions of the frontier molecular orbitals at optimized S_0 geometry of complex 6.

Figure S53. Compositions of the frontier molecular orbitals at optimized S_0 geometry of complex 7.

Figure S54. Compositions of the frontier natural transition orbitals at optimized S₁ geometry of complex 1.

Figure S55. Compositions of the frontier natural transition orbitals at optimized S_1 geometry of complex 2.

Figure S56. Compositions of the frontier natural transition orbitals at optimized S₁ geometry of complex **3**.

Figure S57. Compositions of the frontier natural transition orbitals at optimized S₁ geometry of complex 4.

Figure S58. Compositions of the frontier natural transition orbitals at optimized S₁ geometry of complex 5.

Figure S59. Compositions of the frontier natural transition orbitals at optimized S₁ geometry of complex 6.

Figure S60. Compositions of the frontier natural transition orbitals at optimized S₁ geometry of complex 7.

Figure S61. Compositions of the frontier natural transition orbitals at optimized T₁ geometry of complex 1.

Figure S62. Compositions of the frontier natural transition orbitals at optimized T_1 geometry of complex 2.

Figure S63. Compositions of the frontier natural transition orbitals at optimized T_1 geometry of complex 3.

Figure S64. Compositions of the frontier natural transition orbitals at optimized T₁ geometry of complex 4.

Figure S65. Compositions of the frontier natural transition orbitals at optimized T₁ geometry of complex **5**.

Figure S66. Compositions of the frontier natural transition orbitals at optimized T₁ geometry of complex 6.

Figure S67. Compositions of the frontier natural transition orbitals at optimized T_1 geometry of complex 7.

Figure S68. The core structures in the optimized S_0 , S_1 , and T_1 geometries for complexes 1–7.

	$1 \cdot CH_2Cl_2$	2 • 3(CH ₂ Cl ₂)
Empirical formula	$C_{72}H_{53}CuBrN_2P_3 \bullet CH_2Cl_2$	$C_{72}H_{53}CuClN_2P_3 \bullet 3(CH_2Cl_2)$
Formula weight	1267.45	1392.84
Temperature (K)	100.00(10)	199.99(10)
Wavelength (Å)	1.54184	1.54184
Crystal system	Monoclinic	Triclinic
Space group	$P2_1/c$	P-1
<i>a</i> (Å)	10.31050(10)	10.05020(10)
<i>b</i> (Å)	16.27350(10)	14.4627(2)
<i>c</i> (Å)	37.9409(2)	24.4386(3)
α (°)	90	106.0020(10)
β (°)	94.0320(10)	95.2810(10)
γ (°)	90	97.9430(10)
$V(Å^3)$	6350.27(8)	3350.08(7)
Ζ	4	2
ho (g cm ⁻³)	1.326	1.381
$\mu \text{ (mm-1)}$	3.045	4.055
$F(0\ 0\ 0)$	2600	1432
θ range for data	2.956 to 76.704	3.226 to 76.603
collection (°)		
Index ranges	$-12 \le h \le 13$	$-12 \le h \le 12$
	$-18 \le k \le 20$	$-18 \le k \le 16$
	$-47 \le l \le 47$	$-30 \le l \le 30$
Independent	12814 [R(int) = 0.0434]	13539 [R(int) = 0.1070]
Completeness to $\theta = 67.684^{\circ}$	99.5%	99.8%
Max. and min. transmission	1.00000 and 0.48555	1.00000 and 0.56699
Gof	1.046	1.101
Final R indices	$R_1 = 0.0359$	$R_1 = 0.0818$
$[I > 2\sigma(I)]$	$wR_2 = 0.0922$	$wR_2 = 0.2272$
R (all data)	$R_1 = 0.0387$	$R_1 = 0.0880$
、	$wR_2 = 0.0941$	$wR_2 = 0.2362$
Max/min (e Å ³)	0.653 and -1.072	1.338 and -1.301

 Table S1. Crystallographic data and details for complexes 1–7.

-	3	4	5
Empirical formula		C H CuDeN D	C H CuCIN D
Empirical Iomiula	C ₇₉ Π ₅₈ CullN ₃ Γ ₃	C ₇₉ П ₅₈ CuDIIN ₃ Г ₃	$C_{79}\Pi_{58}CuCIIN_{3}\Gamma_{3}$
Tomporatura (K)	100.00(10)	1203.04	1241.10 100.00(10)
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	1.54194	100.00(10)	100.00(10)
wavelength (A)	1.54184	1.54184	1.54184
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_1/n$	$P2_1/n$
<i>a</i> (A)	13.79570(10)	13.7946(2)	13.87700(10)
<i>b</i> (Å)	13.57050(10)	13.5185(2)	13.53800(10)
<i>c</i> (Å)	38.2006(4)	37.9095(6)	37.2607(3)
α (°)	90	90	90
β (°)	96.3610(10)	96.7570(10)	97.2860(10)
γ (°)	90	90	90
$V(Å^3)$	7107.68(11)	7020.35(18)	6943.53(9)
Ζ	4	4	4
ρ (g cm ⁻³)	1.245	1.216	1.187
$\mu ({\rm mm}^{-1})$	4.810	2.084	1.786
$F(0\ 0\ 0)$	2720	2648	2576
θ range for data	2.328 to 76.826	3.301 to 76.830	2.391 to 76.791
collection (°)			
Index ranges	$-15 \le h \le 17$	$-17 \le h \le 17$	$-17 \le h \le 17$
	$-15 \le k \le 17$	$-17 \le k \le 15$	$-14 \le k \le 17$
	$-43 \le l \le 48$	$-47 \le l \le 43$	$-44 \le l \le 46$
Independent	14432 [R(int) = 0.0470]	14089 [R(int) = 0.0671]	14156 [R(int) = 0.0403]
reflections			
Completeness to $\theta = 67.684^{\circ}$	99.9%	99.4%	99.8%
Max. and min.	1.00000 and 0.73425	1.00000 and 0.51283	1.00000 and 0.90148
transmission			
Gof	1.036	1.038	1.021
Final R indices	$R_1 = 0.0424$	$R_1 = 0.1005$	$R_1 = 0.0388$
$[I > 2\sigma(I)]$	$wR_2 = 0.1093$	$wR_2 = 0.2436$	$wR_2 = 0.1033$
R (all data)	$R_1 = 0.0455$	$R_1 = 0.1095$	$\bar{R}_1 = 0.0420$
× /	$wR_2 = 0.1115$	$wR_2 = 0.2484$	$wR_2 = 0.1057$
Max/min (e Å ³)	1.280 and -0.810	1.314 and -0.966	0.420 and -0.374

	$6 \cdot CH_2Cl_2$	7
Empirical formula	$C_{86}H_{63}CuIN_4P_3 \bullet CH_2Cl_2$	$C_{86}H_{63}CuBrN_4P_3$
Formula weight	1520.68	1388.76
Temperature (K)	100.00(10)	293
Wavelength (Å)	1.54184	1.54184
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
<i>a</i> (Å)	10.38730(10)	10.35530(10)
<i>b</i> (Å)	15.8741(2)	16.0837(3)
<i>c</i> (Å)	24.5313(3)	24.9522(2)
α (°)	98.9400(10)	97.8150(10)
β (°)	100.9360(10)	100.9750(10)
γ (°)	97.5010(10)	97.9910(10)
$V(Å^3)$	3869.47(8)	3983.40(9)
Ζ	2	2
ρ (g cm ⁻³)	1.305	1.158
$\mu (\text{mm}^{-1})$	5.109	1.877
$F(0\ 0\ 0)$	1552	1432
θ range for data	2.857 to 76.790	2.814 to 76.681
collection (°)		
Index ranges	$-13 \le h \le 13$	$-13 \le h \le 13$
	$-20 \le k \le 19$	$-20 \le k \le 19$
	$-30 \le l \le 30$	$-26 \le l \le 31$
Independent	15702 [R(int) = 0.0528]	16170 [R(int) = 0.0559]
reflections		
Completeness to $\theta = 67.684^{\circ}$	99.8%	99.7%
Max. and min.	1.00000 and 0.49493	1.00000 and 0.25038
transmission		
Gof	1.042	1.062
Final R indices	$R_1 = 0.0596$	$R_1 = 0.0453$
$[I > 2\sigma(I)]$	$wR_2 = 0.1620$	$wR_2 = 0.1325$
R (all data)	$R_1 = 0.0645$	$R_1 = 0.0517$
	$wR_2 = 0.1665$	$wR_2 = 0.1372$
Max/min (e Å ³)	1.921 and -1.586	0.370 and -0.658

State	$\lambda(nm)/E(eV)$	Configurations	f
1	373.9 / 3.32	$H \rightarrow L (98)$	0.0620
5	341.0 / 3.64	H-3→L (7); H-2→L (12); H-1→L+1 (77)	0.0931
6	336.4 / 3.69	H-3 \rightarrow L (83); H-2 \rightarrow L+1 (4); H-1 \rightarrow L+1 (10)	0.2539
9	320.3 / 3.87	H→L+3 (36); H→L+4 (40); H→L+5 (12)	0.0634
25	206.0 / 1.19	H-3→L+6 (3); H-2→L+6 (23); H-1→L+5 (9);	0.0700
23	290.974.18	H-1→L+6 (33); H→L+8 (21)	0.0709
	260.6 / 4.76	$H-5 \rightarrow L+7$ (2); $H-3 \rightarrow L+16$ (3); $H-2 \rightarrow L+11$ (3); $H-2 \rightarrow L+12$ (3);	
73		$H-2 \rightarrow L+13$ (4); $H-2 \rightarrow L+16$ (19); $H-2 \rightarrow L+17$ (3); $H-1 \rightarrow L+13$ (8);	0.0690
		H-1→L+15 (7); H-1→L+16 (23); H-1→L+17 (4)	
	259.5 / 4.78	H-6→L+2 (3); H-6→L+3 (3); H-6→L+4 (3); H-6→L+5 (3);	
75		H-5→L+7 (12); H-4→L+4 (3); H-4→L+6 (8);	0 1220
73		H-4→L+8 (16); H-2→L+13 (5); H-2→L+15 (2);	0.1550
		H-1→L+15 (13); H-1→L+16 (4); H→L+15 (5)	
78	258.3 / 4.80	H-6→L+7 (4); H-5→L+7 (21); H-4→L+6 (7); H-4→L+7 (3);	
		$H-4 \rightarrow L+8$ (4); $H-2 \rightarrow L+14$ (5); $H-1 \rightarrow L+14$ (5);	0.1855
		$H-1 \rightarrow L+15 (13); H-1 \rightarrow L+16 (4); H \rightarrow L+15 (9)$	

Table S2. Computed excitation states for complex 1 in CH_2Cl_2 .

Table S3. Computed excitation states for complex 2 in CH_2Cl_2 .

State	$\lambda(nm)/E(eV)$	Configurations	f
1	376.7 / 3.29	$H \rightarrow L$ (98)	0.0639
3	354.7 / 3.50	$H-1 \rightarrow L (85); H \rightarrow L+1 (11)$	0.0693
5	339.6 / 3.65	H-3→L (8); H-2→L (30); H-1→L+1 (58)	0.0664
6	335.8 / 3.69	H-3 \rightarrow L (82); H-1 \rightarrow L+1 (13)	0.3044
8	323.4 / 3.83	H→L+3 (61); H→L+4 (14); H→L+5 (16)	0.0742
25	205 7 / 4 10	H-3→L+6 (4); H-2→L+6 (36); H-1→L+3 (2); H-1→L+5 (6);	0.0(17
23	293.774.19	H-1 \rightarrow L+6 (40); H \rightarrow L+8 (3); H \rightarrow L+9 (2)	0.0017
20	282 5 / 4 20	H-4→L+3 (22); H-4→L+4 (51); H-2→L+3 (3);	0.1021
30	282.374.39	$H-2 \rightarrow L+4$ (2); $H-1 \rightarrow L+14$ (3)	
		$H-5 \rightarrow L+2$ (2); $H-5 \rightarrow L+3$ (4); $H-5 \rightarrow L+4$ (3); $H-5 \rightarrow L+5$ (4);	
72	259.2 / 4.78	H-4→L+5 (3); H-4→L+6 (6); H-4→L+8 (6); H-2→L+11 (2);	0 1944
12		H-2→L+13 (2); H-2→L+14 (3); H-2→L+16 (6); H-1→L+14 (6);	0.1644
	$H-1 \rightarrow L+15 (11); H \rightarrow L+14 (11); H \rightarrow L+15 (5)$		
		H-5→L+3 (12); H-5→L+5 (7); H-4→L+4 (2); H-4→L+5 (4);	
73	258.9 / 4.79	H-4→L+6 (13); H-4→L+7 (3); H-4→L+8 (12);	0.0881
		$H-1 \rightarrow L+14$ (3); $H \rightarrow L+14$ (18); $H \rightarrow L+15$ (7)	
		H-7→L+1 (3); H-5→L+4 (3); H-4→L+6 (2); H-3→L+14 (6);	
77	257.4 / 4.82	H-1→L+14 (32); H-1→L+15 (3); H→L+14 (16);	0.1446
		$H \rightarrow L+15$ (6); $H \rightarrow L+17$ (2); $H \rightarrow L+18$ (2)	

State	$\lambda(nm)/E(eV)$	Configurations	f
1	377.6 / 3.28	H-1→L (97)	0.0512
5	352.5 / 3.52	H-3→L (5); H-2→L (89)	0.0680
Q	226 0 / 2 60	H-4→L (20); H-3→L (6); H-3→L+1 (2);	0.2306
8	330.07 3.09	H-2→L+1 (58); H→L+4 (8)	
21	212 2 / 2 06	H-2→L+3 (2); H-1→L+3 (3); H-1→L+6 (74);	0.0(10
21	313.37 3.90	H-1 \rightarrow L+7 (8); H \rightarrow L+7 (3)	0.0010
26		H-7→L+1 (6); H-5→L+1 (23); H-1→L+6 (4);	0.0(50
26	307.474.03	H-1→L+7 (49); H→L+9 (4)	0.0659
		H-8→L+1 (19); H-7→L+1 (5); H-5→L+2 (25);	
50	291.1 / 4.26	H-5→L+3 (4); H-5→L+4 (3); H-3→L+2 (7);	0.0686
		H-1→L+11 (9); H→L+11 (4); H→L+12 (14)	
57	295 2 / 4 25	H-9→L+1 (2); H-6→L+4 (4); H-6→L+5 (72);	0.0007
57	285.2/4.35	H-4→L+4 (6); H-2→L+14 (4)	0.0897
		H-9→L+5 (4); H-8→L+2 (4); H-8→L+4 (2); H-7→L+2 (4);	
82	272.6 / 4.55	H-5→L+7 (3); H-3→L+11 (4); H-1→L+13 (9); H-1→L+15 (7);	0.1468
		H-1→L+16 (5); H→L+17 (30); H→L+18 (3)	

Table S4. Computed excitation states for complex 3 in CH_2Cl_2 .

Table S5. Computed excitation states for complex 4 in CH_2Cl_2 .

State	$\lambda(nm)/E(eV)$	Configurations	f
1	376.4 / 3.29	$H-1 \rightarrow L (94); H \rightarrow L (4)$	0.0527
8	335.0 / 3.70	H-4→L (2); H-3→L (27); H-2→L+1 (61); H→L+4 (3)	0.2378
40	2071/422	H-7→L+1 (2); H-6→L+2 (39); H-6→L+3 (2);	0 1 4 1 0
49	207.174.32	H-3 \rightarrow L+2 (21); H \rightarrow L+12 (18)	0.1419
		H-4→L+8 (18); H-4→L+9 (8); H-4→L+11 (2); H-3→L+6 (3);	
80	270.6 / 4.58	H-3→L+8 (6); H-3→L+9 (2); H-2→L+8 (5); H-2→L+10 (6);	0.1184
		$H-1 \rightarrow L+16$ (2); $H \rightarrow L+13$ (3); $H \rightarrow L+17$ (17); $H \rightarrow L+18$ (5)	
		H-6→L+6 (11); H-4→L+8 (9); H-4→L+9 (2);	
81	270.1 / 4.59	H-3→L+6 (3); H-2→L+8 (4); H-2→L+9 (7);	0.1380
		H-2→L+11 (10); H-1→L+13 (3); H→L+17 (31)	
00	2(2.0.1.4.72	H-8→L+4 (2); H-5→L+5 (2); H-5→L+6 (9); H-5→L+7 (11);	0 1174
98	202.8/4./2	H-2→L+14 (8); H→L+13 (2); H→L+14 (41); H→L+16 (5)	0.11/4

State	$\lambda(nm)/E(eV)$	Configurations	f
1	377.5 / 3.28	$H-1 \rightarrow L (85); H \rightarrow L (13)$	0.0489
8	334.5 / 3.71	H-3→L (27); H-2→L+1 (63); H→L+4 (3)	0.2320
40	2862/422	H-8→L+1 (7); H-6→L+2 (25); H-3→L+2 (34);	0.1206
49	280.3 / 4.33	$H-1 \rightarrow L+12$ (3); $H \rightarrow L+11$ (2); $H \rightarrow L+12$ (15)	
50	295 2 / 4 25	H-7→L+1 (4); H-5→L+4 (17); H-5→L+5 (56);	0 1010
50	283.3 / 4.33	H-3→L+4 (3); H-2→L+15 (2)	0.1010
		H-8→L+2 (2); H-8→L+4 (3); H-6→L+6 (7); H-4→L+8 (5);	
77	269.7 / 4.60	H-3→L+6 (12); H-3→L+7 (4); H-3→L+8 (3); H-2→L+10 (15);	0.1112
		H-2→L+11 (3); H→L+17 (7); H→L+18 (11)	
		H-8→L+2 (2); H-6→L+6 (4); H-4→L+9 (4);	
78	269.1 / 4.61	$H-2 \rightarrow L+9$ (4); $H-2 \rightarrow L+10$ (4); $H-2 \rightarrow L+11$ (7);	0.1957
		H-1→L+16 (5); H→L+16 (8); H→L+17 (39)	
		H-7→L+3 (3); H-5→L+6 (4); H-2→L+12 (4); H-2→L+13 (5);	
98	260.9 / 4.75	H-2→L+14 (4); H-2→L+15 (5); H-1→L+13 (3);	0.3006
_		H-1→L+14 (21); H-1→L+15 (23); H-1→L+16 (4)	

Table S6. Computed excitation states for complex 5 in CH_2Cl_2 .

Table S7. Computed excitation states for complex 6 in CH_2Cl_2 .

State	$\lambda(nm)/E(eV)$	Configurations	f
1	379.8 / 3.26	$H-1 \rightarrow L (51); H \rightarrow L (44)$	0.0603
5	350.3 / 3.54	H-4→L (7); H-3→L (85)	0.0693
0	225 2 / 2 70	H-5→L (18); H-4→L (11); H-4→L+1 (3); H-3→L+1 (44);	0.2150
8	335.3 / 3. /0	$H-2\rightarrow L$ (6); $H\rightarrow L+2$ (3); $H\rightarrow L+4$ (3)	0.2150
11	220 2 / 2 75	H-1→L+2 (15); H-1→L+3 (12); H-1→L+4 (42); H-1→L+6 (4);	0.0701
11	330.3 / 3. / 5	H→L+2 (5); H→L+3 (3); H→L+4 (7); H→L+6 (4)	0.0781
15	222.1./2.04	H-5→L+1 (8); H-4→L+2 (3); H-2→L+2 (9); H-2→L+3 (4);	0.072(
15	323.1 / 3.84	H-2→L+4 (24); H-1→L+4 (10); H→L+6 (29)	0.0/36
25	202.0 / 4.00	$H-10\rightarrow L$ (3); $H-4\rightarrow L+4$ (4); $H-1\rightarrow L+5$ (2);	0.00(1
33	302.9/4.09	H-1→L+8 (50); H→L+9 (21)	0.0864
41	200 1 / 4 15	H-10→L (9); H-9→L (11); H-4→L+4 (5); H-1→L+8 (2);	0.0(27
41	299.174.15	H→L+9 (24); H→L+10 (24); H→L+11 (4)	0.063/
(0	295 4 / 4 24	H-11→L+1 (3); H-7→L+5 (66); H-5→L+6 (3);H-3→L+4 (2);	0.0955
08	285.4/4.34	H-3→L+6 (2); H-3→L+15 (3); H-1→L+12 (3)	0.0855
75	201 4 / 4 41	H-9→L+4 (3); H-8→L+2 (3); H-6→L+6 (13); H-5→L+4 (3);	0 1209
15	/5 281.4/4.41	H-3→L+7 (16); H-2→L+7 (4); H-1→L+13 (6); H→L+13 (29)	0.1298
		H-9→L+4 (3); H-6→L+7 (17); H-5→L+7 (6); H-4→L+9 (8);	
91	274.6 / 4.51	$H-4 \rightarrow L+11$ (3); $H-2 \rightarrow L+9$ (10); $H-2 \rightarrow L+10$ (11); $H-2 \rightarrow L+11$ (5);	0.1600
		H-1→L+14 (8); H→L+14 (3); H→L+16 (2)	
		H-9→L+4 (4); H-6→L+7 (9); H-5→L+6 (2); H-5→L+7 (7);	
02	2742/452	H-4→L+8 (15); H-4→L+9 (2); H-4→L+10 (5); H-3→L+9 (2);	0 0742
92	2/4.3/4.32	H-2→L+7 (2); H-2→L+8 (2); H-2→L+10 (16);	0.0743
		H-2→L+11 (3); H-2→L+12 (2); H-1→L+14 (3)	

State	$\lambda(nm)/E(eV)$	Configurations	f
1	379.3 / 3.27	$H-1 \rightarrow L (45); H \rightarrow L (51)$	0.0621
4 250 2 / 2 54	H-4→L+1 (4); H-3→L (8); H-2→L (6);	0.0752	
4	330.27 3.34	H-2→L+1 (8); H-1→L+1 (43); H→L+1 (27)	0.0755
7	227 0 / 2 67	H-5 \rightarrow L (25); H-4 \rightarrow L (11); H-3 \rightarrow L+1 (10);	0.0767
1	/ 33/.9/3.0/	$H-2 \rightarrow L+1$ (7); $H \rightarrow L+3$ (36)	0.0707
Q	22/11/271	H-5 \rightarrow L (11); H-4 \rightarrow L (16); H-4 \rightarrow L+1 (3);	0 2121
0	554.17 5.71	$H-3 \rightarrow L+1$ (33); $H-2 \rightarrow L+1$ (26); $H \rightarrow L+1$ (2)	0.2121
		$\text{H-5} \rightarrow \text{L} (2); \text{H-4} \rightarrow \text{L} (2); \text{H-2} \rightarrow \text{L} (4);$	
10	328.3 / 3.78	$H-2 \rightarrow L+4$ (3); $H-1 \rightarrow L+3$ (39); $H-1 \rightarrow L+4$ (10);	0.0752
		$H-1 \rightarrow L+6$ (3); $H \rightarrow L+4$ (21); $H \rightarrow L+6$ (5)	
23	312.2 / 3.97	$H-1 \rightarrow L+7$ (23); $H \rightarrow L+2$ (2); $H \rightarrow L+7$ (62)	0.0729
60	285.3 / 4.35	$H-10 \rightarrow L+1$ (4); $H-6 \rightarrow L+5$ (74)	0.0830
		H-8→L+3 (6); H-7→L+3 (3); H-5→L+7 (3); H-4→L+2 (3);	
63	284.1 / 4.36	H-4→L+6 (3); H-4→L+7 (13); H-3→L+7 (3); H-2→L+6 (2);	0.1071
		H-2 \rightarrow L+7 (39); H-2 \rightarrow L+8 (2); H \rightarrow L+13 (4)	
		H-9→L+3 (24); H-9→L+4 (13); H-8→L+4 (7);	
70	280.4 / 4.42	$H-7 \rightarrow L+3$ (7); $H-5 \rightarrow L+4$ (5); $H-4 \rightarrow L+6$ (15);	0.1135
		$H-3 \rightarrow L+6$ (2); $H \rightarrow L+12$ (5); $H \rightarrow L+13$ (6)	
		H-9→L+4 (9); H-9→L+6 (2); H-8→L+4 (7); H-8→L+6 (2);	
85	273 5 / 4 53	H-6→L+3 (7); H-5→L+6 (3); H-5→L+8 (3); H-4→L+7 (2);	0 1403
05	275.574.55	H-4→L+8 (7); H-3→L+7 (3); H-3→L+8 (11); H-3→L+9 (4);	0.1403
		H-2 \rightarrow L+7 (4); H-2 \rightarrow L+9 (5); H-2 \rightarrow L+10 (8)	
		$H-9 \rightarrow L+6$ (9); $H-8 \rightarrow L+4$ (3); $H-8 \rightarrow L+6$ (5); $H-5 \rightarrow L+6$ (3);	
87	272 9 / 4 54	$H-4 \rightarrow L+8$ (5); $H-4 \rightarrow L+10$ (3); $H-3 \rightarrow L+7$ (2); $H-2 \rightarrow L+8$ (2);	0 1 1 0 5
07	212.91 4.34	$H-2 \rightarrow L+9$ (2); $H-2 \rightarrow L+10$ (6); $H-2 \rightarrow L+11$ (3); $H-1 \rightarrow L+14$ (14);	0.1105
		$H-1 \rightarrow L+15$ (6); $H \rightarrow L+16$ (3); $H \rightarrow L+17$ (7)	

Table S8. Computed excitation states for complex 7 in CH₂Cl₂.

6. References

- (1) W. Xu, B. Chen, L. Liu, X. X. Zhong, G. J. Zhou, F. B. Li, H. M. Qin. J. Lumin., 2024, 266, 120257.
- (2) L. Liu, X. Chen. CN111233924A, 2020.
- (3) SAINT Reference Manual, Siemens Energy and Automation, Madison, WI, 1994.
- (4) G. M. Sheldrick, *SADABS*, *Empirical Absorption Correction Program*, University of Göttingen, Göttingen, Germany, 1997.
- (5) G. M. Sheldrick, *SHELXTL Reference Manual, Version 5.1*, Siemens Energy and Automation, Madison, WI, 1997.
- (6) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A.

Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian 16, Revision A.03*, Gaussian Inc., Wallingford CT, 2016.

- (7) T. Lu, F. W. Chen, Acta Chim. Sinica, 2011, 69(20), 2393-2406.
- (8) T. Lu, F. W. Chen, J. Comput. Chem., 2012, 33(5), 580-592.