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Electrochemical characterization 

 

Figure S1. GCD curve for the (a) NiCSe and (b) NiSe2-based electrode at a variable charge-discharge 

current from 0.05 mA to 1 mA. 

 

Figure S2. Specific capacitance for the (a) NiSe and (b) NiSe2-based electrodes with continuous 300 

cycles at a charge-discharge current of 0.05, 0.1, 0.3, 0.5, 0.7, and 1.0 mA. 
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Figure S3. CV curves for (a) NiSe and (b) NiSe2 based electrode at a scan rate ranging from 10 mV s-1 

in 1 M KOH. 

 

 

Figure S4. Capacitive contribution (red region) of Ni3Se4 based electrode to the total current 

contribution at (a) 10, (b) 30, (c) 50, (d) 70 mV s-1 , derived from Figure . 
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Figure S5. (a) Logarithmic dependence between peak current and scan rate at the oxidation and 

reduction peaks for the NiSe2 based electrode. Capacitive contribution (red region) to the total current 

contribution at (b) 10, (c) 30, (d) 50, (e) 70, and (f) 100 mV s-1. 

 

 

Figure S6. (a) Logarithmic dependence between peak current and scan rate at the oxidation and 

reduction peaks for the NiSe based electrode. Capacitive contribution (red region) to the total current 

contribution at (b) 10, (c) 30, (d) 50, (e) 70, and (f) 100 mV s-1. 
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Figure S7. Determination of surface coverage of redox species (*) and diffusion coefficient (D) in 

1.0 M KOH for the (a) NiSe, (b) Ni3Se4, and (c) NiSe2-based electrode. 

Figures 3d and S3 show a set of CV 1.0 M KOH solution at different scan rates in 0-0.6 V versus 

Hg/HgO for the Ni-Se based electrodes. As it can be seen clearly in Figure S7, the current associated 

with both the anodic and cathodic peaks exhibits a linear increase as the scan rate is raised. Thus, the 

surface coverage of redox species (Γ*) was determined according to the following equation: [1] 

𝐼𝑝 = (
𝑛2𝐹2

4𝑅𝑇
)𝐴∗𝑣 
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Here, n, F, R, T, v, and A represent the number of transferred electrons (assumed to be 1), the Faraday 

constant (96845 C mol⁻¹), the gas constant (8.314 J K⁻¹ mol⁻¹), temperature, scan rate, and the surface 

area of the glassy carbon electrodes (0.196 cm²), respectively.  

Furthermore, a linear relationship in Figure S7 was observed in the dependence of peak current density 

on the square root of the voltage scanning rate. This relationship is commonly associated with a 

diffusion-limited Ni(OH)2⇌NiOOH redox reaction, wherein the diffusion of protons within the 

particle is considered to be the limiting factor governing the reaction rate. The mathematical 

representation of this relationship is given by: [1] 

𝐼𝑝 = 2.69 × 105𝑛3 2⁄ 𝐴𝐷1 2⁄ 𝐶𝑣1 2⁄  

Here, Ip represents the peak current during both forward and backward scans, n denotes the number of 

transferred electrons (assumed to be 1), A stands for the geometric surface area of the glassy carbon 

(GC) electrode (0.196 cm²), D represents the diffusion coefficient, C denotes the proton concentration 

(estimated to be 3.97 g cm⁻³,[2] which we approximated as 0.043 mol cm⁻³), and v signifies the 

potential scan rate. 
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Figure S8. Determination of ECSA curves in 1 M KOH for the (a) NiSe, (b) Ni3Se4, and (c) 

NiSe2-based electrode.  

The Electrochemically Active Surface Areas (ECSA) were determined by assessing the 

electrochemical double-layer capacitance (Cdl), derived from CVs with various scan rates. As shown in 

Figure S8, by plotting the capacitive current (I) against the scan rate (v), a linear relationship emerged 

with the slope corresponding to Cdl. Thus, the ECSA can be determined utilizing the equation[3]:  

𝐸𝐶𝑆𝐴 = 𝐶𝑑𝑙 𝐶𝑠⁄  

where Cs is determined to be 0.04 mF cm-2 based on reported values for Ni-based metal electrodes in 

aqueous alkaline solution. [4]  
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Table S1. The intrinsic property and the supercapacitive and the MOR performance. 

materials and morphology crystal system space group 

a∗ 

(mol cm-2) 

aD 

(cm2 s-1) 

aECSA 

(cm-2) 

asupercapacitance 

(F g-1 @0.5 mA) 

bMOR 

(mA cm-2@0.6 V) 

NiSe nanoparticles Monoclinic P 63/m m c 5.35×10−8 3.42×10-9 8.5 451.3 56.9  

Ni3Se4 nanorods Hexagonal C 1 2/m 1 6.88×10−8 5.83×10-9 9.2 612.0 93.7 

NiSe2 cubics Cubic P a -3 4.51×10−8 2.53×10-9 9.1 438.9 68.5 

Note that the values of a were taken in 1 M KOH, and b was recorded in the 1 M KOH containing 1 M methanol. 
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