Supporting Information

A novel viologen-based hybrid crystalline material for

photochromic glass film, information storage and anti-

counterfeiting

Yang-Tao Yu, Shu-Hao Li, Zhuo-Yu Li, Jian-Ge Zeng, Chun-Jie Liu, Li Li*

School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.

*Corresponding author E-mail: lili@hpu.edu.cn (L. Li)

Table of contents

Fig. S1 TGA curve of compound 1 was investigated using powder samples under N_2 . The weight loss is 5.5 % up to 173 °C corresponding to the loss of one free H_2O and one coordinated H_2O .

Fig. S2 PXRD pattern of compound 1 at different pH.

Fig. S3 Photochromic behaviors of compound **1**. Label: **1a**: initial sample before photo irradiation; **1b-P**: the irradiated sample; **1b-P':** the decolored samples irradiated again.

Fig. S4 IR spectra of compound **1** in different states. Label: **1a**: initial sample before photo irradiation; **1b-P**: the irradiated sample.

Fig. S5 PXRD patterns of compound **1** in different states. Label: **1a**: initial sample before photo irradiation; **1b-P**: the irradiated sample; **simulated**: PXRD simulation of the compound.

Fig. S6 The discoloration of photochromic glass under ultraviolet light.

Fig. S7 Printing effect and effective retention time of two-dimensional code information storage on photochromic glass.

Fig. S8 Number of cycles for information storage on glass film.

Fig. S9 Ink-free printing effect of compound **1** under visible and ultraviolet light irradiation at the same time.

Fig. S10 (a) PXRD patterns of compound **1** after fumigation with different amines; (b) Infrared spectra of **1** after fumigation with different amines.

Scheme 1. The synthesis scheme of viologen ligand pbpy 2Cl.

Fig. S1 TGA curve of compound 1 was investigated using powder samples under N_2 . The weight loss is 5.5 % up to 173 °C corresponding to the loss of one free H_2O and one coordinated H_2O .

Fig. S2 PXRD pattern of compound 1 at different pH.

Fig. S3 Photochromic behaviors of compound 1. Label: 1a: initial sample before photo irradiation; 1b-P: the irradiated sample; 1b-P': the decolored samples irradiated again.

Fig. S4 IR spectra of compound 1 in different states. Label: 1a: initial sample before photo irradiation; 1b-P: the irradiated sample.

Fig. S5 PXRD patterns of compound 1 in different states. Label: 1a: initial sample before photo irradiation; 1b-P: the irradiated sample; simulated: PXRD simulation of the compound.

Fig. S6 The discoloration of photochromic glass under ultraviolet light.

Fig. S7 Printing effect and effective retention time of two-dimensional code information storage on photochromic glass.

Fig. S8 Number of cycles for information storage on glass film.

Fig. S9 Ink-free printing effect of compound 1 under visible and ultraviolet light irradiation at the same time.

Fig. S10 (a) PXRD patterns of compound **1** after fumigation with different amines; (b) Infrared spectra of **1** after fumigation with different amines.

Compound	Response rate	Application performance	Fading time	Reference
1	1 s	Waterproof photochromic glass film Amine-selective detection Information storage and anti- counterfeiting	10 days	
$[Zn_4(BTC)_3(bcbpy)_2]$ ·5H ₂ O	5 s	The detection of benzenes and NO_2^-	/	a
[Cd(bcbpy)Cl ₂]·H ₂ O	30 s	The sensing of organic amines and benzenes	/	b
$\{[Cd_2(bcbp)(pta)_2(H_2O] \cdot 2H_2O\}_n$	20 min	Detection of MnO ₄ ⁻ Chemochromism	6 h	c
[Cd ₂ (bcbpy)(m- BDC) ₂ (H ₂ O) ₄] · 5H ₂ O	30 s	Inkless and erasable prints Amine-selective sensing	2 days	d
$(H_2AV)[H_2(P_2W_{18}O_{62})] \cdot 9.5H_2O$	30 s	Raman spectroscopy detection of EDA	7 days	e
[Zn(bcbpy) _{0.5} (pma) _{0.5} (H ₂ O)]·3H ₂ O	/	Amine detection Ultraviolet light detection Inkless and erasable prints	18 h	f
Zn (CV) _{0.5} · (BDC) _{0.5} · Br	5 s	Smart window Inkless and erasable printing Anti-counterfeiting applications	6 days	g

Table S1. Comparison of properties of 1 with existing photochromic materials

Reference

- a. J. Zou, J. Ji, M. Fan, J. Li, H. Wang and G.-D. Li, *Dalton Trans.*, 2021, 50, 10237–10242.
- b. H. Wang, Z. Tu and H. Zhang, *Dalton Trans.*, 2019, 48, 17852–17857.
- c. X. Zhou, Y. Li, X. Li, S. Du, Y. Yang, K. Xiong, Y. Xie, X. Shi and Y. Cai, *Inorg. Chem.*, 2022, 61, 11687–11694.
- d. Y. Hua, N.-N. Zhang, M.-K. Wang, S.-Q. Wang and L. Li, *Dyes Pigm.*, 2021, 194, 109595.
- e. X.-Z. Zhang, W.-J. Zhu, Z.-X. Yang, Y. Feng, L.-L. Fan, G.-G. Gao and H. Liu, *J. Mater. Chem. C*, 2022, 10, 15451–15457.
- f. L. Li, Z.-M. Tu, Y. Hua, X.-N. Li, H.-Y. Wang and H. Zhang, Inorg. Chem.

Front., 2019, 6, 3077-3082.

g. X.-N. Li, H. Xu, L. Huang, Y. Shen, M.-J. Li and H. Zhang, *Dyes Pigm.*, 2023, 213, 111151.

	1 1	
Object	Response time	Response condition
NH ₃	30 s	evident
EA	1 min	evident
PA	3 min	evident
BA	3 min	light
DEA	5 min	lighter
Dipropylamine	no	no
Triethylamine	no	no
Tri-n-butylamine	no	no

Table S2. Data response of compound 1 to different amines

Crystallographic Data

Table 55. Crystar Data and Structure Remements for compound 1			
Empirical formula	$C_{23}H_{20}CdClN_2O_9$		
CCDC number	2222406		
Formula weight	616.26		
Temperature/K	273.15		
Crystal system	triclinic		
Space group	РĪ		
a/Å	10.3601(9)		
b/Å	11.2364(11)		
c/Å	12.0547(12)		
α/°	71.233(2)		
β/°	79.299(3)		
$\gamma/^{\circ}$	74.139(3)		
Volume/Å ³	1270.7(2)		
Z	2		
$\rho_{calc} g/cm^3$	1.611		
μ/mm^{-1}	1.018		
F(000)	618.0		
Goodness-of-fit on F ²	1.034		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0463, wR_2 = 0.1221$		
Final R indexes [all data]	$R_1 = 0.0516, wR_2 = 0.1257$		

 Table S3. Crystal Data and Structure Refinements for compound 1

 Table S4. Important bond lengths of compound 1

Bond	Length/Å	Bond	Length/Å
Cd1-Cl1	2.5315(14)	Cd1-O2	2.434(3)
Cd1-N1	2.413(4)	Cd1-O6	2.488(3)
Cd1-O3	2.369(3)	C1-C5	1.527(5)
Cd1-O4	2.439(3)	C1-O1	1.274(5)
C11-N1	1.362(6)	C14-N1	1.360(5)
C10-O2	1.270(5)	C10-O6	1.280(5)

Bond AnglesAngle/°Bond AnglesAngle/°N1-Cd1-Cl1165.43(10)O4-Cd1-Cl188.66(8)N1-Cd1-O286.67(12)O2-C10-O6121.4(4)N1-Cd1-O481.67(11)N1-C11-C7123.4(4)N1-Cd1-O695.83(12)C11-N1-Cd1123.3(3)O3-Cd1-Cl199.49(9)C14-N1-C11116.7(4)O3-Cd1-N182.48(12)C14-N1-Cd1118.0(3)O3-Cd1-O282.53(10)C1-O3-Cd1100.8(2)		1	6	
N1-Cd1-Cl1165.43(10)O4-Cd1-Cl188.66(8)N1-Cd1-O286.67(12)O2-C10-O6121.4(4)N1-Cd1-O481.67(11)N1-C11-C7123.4(4)N1-Cd1-O695.83(12)C11-N1-Cd1123.3(3)O3-Cd1-Cl199.49(9)C14-N1-C11116.7(4)O3-Cd1-N182.48(12)C14-N1-Cd1118.0(3)O3-Cd1-O282.53(10)C1-O3-Cd1100.8(2)	Bond Angles	Angle/°	Bond Angles	Angle/°
N1-Cd1-O286.67(12)O2-C10-O6121.4(4)N1-Cd1-O481.67(11)N1-C11-C7123.4(4)N1-Cd1-O695.83(12)C11-N1-Cd1123.3(3)O3-Cd1-Cl199.49(9)C14-N1-C11116.7(4)O3-Cd1-N182.48(12)C14-N1-Cd1118.0(3)O3-Cd1-O282.53(10)C1-O3-Cd1100.8(2)	N1-Cd1-Cl1	165.43(10)	O4-Cd1-Cl1	88.66(8)
N1-Cd1-O481.67(11)N1-C11-C7123.4(4)N1-Cd1-O695.83(12)C11-N1-Cd1123.3(3)O3-Cd1-Cl199.49(9)C14-N1-Cl1116.7(4)O3-Cd1-N182.48(12)C14-N1-Cd1118.0(3)O3-Cd1-O282.53(10)C1-O3-Cd1100.8(2)	N1-Cd1-O2	86.67(12)	O2-C10-O6	121.4(4)
N1-Cd1-O695.83(12)C11-N1-Cd1123.3(3)O3-Cd1-Cl199.49(9)C14-N1-Cl1116.7(4)O3-Cd1-N182.48(12)C14-N1-Cd1118.0(3)O3-Cd1-O282.53(10)C1-O3-Cd1100.8(2)	N1-Cd1-O4	81.67(11)	N1-C11-C7	123.4(4)
O3-Cd1-Cl199.49(9)C14-N1-Cl1116.7(4)O3-Cd1-N182.48(12)C14-N1-Cd1118.0(3)O3-Cd1-O282.53(10)C1-O3-Cd1100.8(2)	N1-Cd1-O6	95.83(12)	C11-N1-Cd1	123.3(3)
O3-Cd1-N182.48(12)C14-N1-Cd1118.0(3)O3-Cd1-O282.53(10)C1-O3-Cd1100.8(2)	O3-Cd1-Cl1	99.49(9)	C14-N1-C11	116.7(4)
O3-Cd1-O2 82.53(10) C1-O3-Cd1 100.8(2)	O3-Cd1-N1	82.48(12)	C14-N1-Cd1	118.0(3)
	O3-Cd1-O2	82.53(10)	C1-O3-Cd1	100.8(2)
O3-Cd1-O4 144.21(10) C10-O6-Cd1 91.0(2)	O3-Cd1-O4	144.21(10)	C10-O6-Cd1	91.0(2)

Table S5. Important bond angles of compound 1