Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Electrostatic vs Electronic interactions within oxidized multinuclear Pt(bipyridine)(dithiolene) complexes

Khalil Youssef, Antoine Vacher, Thanaphon Khrueawatthanawet, Thierry Roisnel , Frédéric Barrière, Dominique Lorcy*

Table of content

Fig. S1: Side view of 3	р3
Fig. S2: Side view of proligand 7	р3
Fig. S3: Cyclic voltammogram of PtP	p4
Fig. S4: Cyclic voltammogram of Pt ₂ Fl	p4
Fig. S5: Cyclic voltammogram of Pt ₃ 1,3,5-P	p5
Fig. S6: Cyclic voltammogram of Pt ₃ 1,3,5-P [NBu ₄][BArF]	р5
Fig. S7: Cyclic voltammogram of Pt ₂ 1,3-P and Pt ₂ 1,4-P (scan rate)	p6
Fig. S8: Differential UV-vis-NIR spectra of PtP	p6
Fig. S9: UV-vis-NIR spectrum of Oxidized Pt ₂ 1,3-P and Pt ₃ 1,3,5-P complexe	s p7
Fig. S10: Differential UV-vis-NIR spectra of Pt ₃ 1,3,5-P	p7
Fig. S11: Differential UV-vis-NIR spectra of Pt ₂ 1,3-P, Pt ₂ 1,4-P and Pt ₃ 1,3,5-	P p8
Fig. S12: Frontier molecular orbitals for Pt21,3-P	p8
Fig. S13: ¹ H RMN of 3	p9
Fig. S14: ¹³ C RMN of 3	p9
Fig. S15: ¹ H RMN of 4	p10
Fig. S16: ¹³ C RMN of 4	p10
Fig. S17: ¹ H RMN of 6	p11
Fig. S18: ¹³ C RMN of 6	p11
Fig. S19: ¹ H RMN of 7	p12
Fig. S20: ¹³ C RMN of 7	p12
Fig. S21: ¹ H RMN of 8	p13
Fig. S22: ¹ H RMN of Pt ₂ 1,3-P	p13
Fig. S23: ¹³ C RMN of Pt ₂ 1,3-P	p14
Fig. S24: ¹ H RMN of Pt ₂ 1,4-P	p14
Fig. S25: ¹³ C RMN of Pt₂1,4-P	p15
Fig. S26: ¹ H RMN of Pt₂Fl	p15
Fig. S27: ¹³ C RMN of Pt ₂ Fl	p16
Fig. S28: ¹ H RMN of Pt ₃ 1,3,5-P	p16

Fig. S1: Side view of 1,3-bis(dithiol-2-one) **3** with the central phenyl ring in the horizontal plane and the dithiole ring in the other one, the angle between the planes amounts to $14.2(2)^{\circ}$.

Fig. S2: Side view of compound 7 with the central phenyl ring in the horizontal plane showing the angles between the metalladithiolene planes and the phenyl ring plane rings in the range of $35.4(5)^{\circ}$ - $49.1(3)^{\circ}$. Butyl chains have been omitted for clarity

Fig. S3: Cyclic voltammogram of PtP in CH_2Cl_2 using 0.1 M of [NBu₄][PF₆] as supporting electrolytes. v=100 mV.s⁻¹.

Fig. S4: Cyclic voltammogram of Pt_2Fl in CH_2Cl_2 using 0.1 M of [NBu₄][PF₆] as supporting electrolytes. v=100 mV.s⁻¹.

Fig. S5: Cyclic voltammogram of $Pt_31,3,5-P$ in CH_2Cl_2 using 0.1 M of $[NBu_4][PF_6]$ as supporting electrolytes. v=100 mV.s⁻¹.

Fig. S6: Cyclic voltammogram of **Pt₃1,3,5-P** in CH₂Cl₂ using 0.005 M of [NBu₄][BArF] as supporting electrolytes. v=100 mV.s⁻¹.

Fig. S7: Cyclic voltammogram of **Pt₂1,3-P** (left) and **Pt₂1,4-P** (right)in CH₂Cl₂ using 0.005 M of [NBu₄][BArF] as supporting electrolytes. 20 mV/s<v<600 mV/s.

Fig. S8: Differential UV-vis-NIR spectra of **PtP** monitored upon gradual oxidation of the neutral complex with 0.2 M [Bu₄N][PF₆] as the supporting electrolyte.

Fig. S9: UV-vis-NIR spectrum of Oxidized Pt₂1,3-P and Pt₃1,3,5-P complexes.

Fig. S10: Differential UV-vis-NIR spectra of **Pt**₃**1**,3,5-P monitored upon gradual oxidation of the neutral complex with 0.005 M [Bu₄N][BArF] as the supporting electrolyte.

Fig. S11: Differential UV-vis-NIR spectra of $Pt_21,3-P$ (a), $Pt_21,4-P$ (b) and $Pt_31,3,5-P$ (c) monitored upon gradual oxidation with 0.005 M [Bu₄N][BArF] as the supporting electrolyte.

Fig. S12: Frontier molecular orbitals (HOMO, HOMO-1, LUMO and LUMO+1) and calculated energy levels for complex Pt21,3-P.

Fig. S14: ¹³C RMN of 3

Fig. S16: ¹³C RMN of 4

Fig. S18: ¹³C RMN of **6**

Fig. S20: ¹³C RMN of 7

Fig. S21: ¹H RMN of 8

Fig. S22: ¹H RMN of Pt₂1,3-P

Fig. S24: ¹H RMN of Pt₂1,4-P

Fig. S26: ¹H RMN of Pt₂Fl

Fig. S28: ¹H RMN of Pt₃1,3,5-P