Copper-assisted anti-cancer activity of

hydroxycinnamic acid terpyridine conjugates on triple-negative breast cancer

Anindya Roy^a, Sajmina Khatun^b, Prashant Dattatraya Dewale^a, Aravind Kumar Rengan^b and Jugun Prakash Chinta^a*

^aDepartment of Chemistry, National Institute of Technology Warangal, Warangal, Telangana

506004, India.

^bDepartment of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad

5022854, India.

Electronic Supplementary Information

Table of Contents

- **S1.** ¹H NMR spectrum of **2** in DMSO d_6
- **S2.** ¹³C NMR spectrum of **2** in DMSO d_6
- **S3.** ESI Mass spectrum of **2**
- **S4.** ¹H NMR spectrum of **3** in DMSO d_6
- **S5.** ¹³C NMR spectrum of **3** in DMSO d_6
- S6. ESI Mass spectrum of 3
- S7. ESI-MS spectra of 4 and 5
- **S8.** UV Visible spectra of **2**, **3**, **4**, and **5** in Methanol
- S9. Solid state FT-IR spectra of 2, 3, 4, and 5
- **S10.** DPPH Radical scavenging assay
- **S11.** *ct*-DNA binding studies (Dye displacement studies)

S12. ct-DNA binding studies (UV-Visible absorbance studies)
S13. ct-DNA binding studies (ct-DNA melting studies)
S14. ct-DNA binding studies (Circular Dichroism studies)
S15. Live-dead imaging of 4T1 cells treated with 4 and 5
S16. Clonogenic assay in 4T1 cells treated with 4 and 5
S17. HPLC traces of 4
S18. HPLC traces of 5
S19. HPLC traces of Cu-1
S20. Stability of 4 & 5 in TE Buffer

Figure S1. ¹H NMR (400 MHz) spectrum of 2 in DMSO $- d_6$.

Figure S2. ¹³C NMR (400 MHz) spectrum of 2 in DMSO $- d_6$.

Figure S3. ESI-MS spectrum of 2.

Figure S4. ¹H NMR (400 MHz) spectrum of 3 in DMSO $- d_6$.

Figure S5. ¹³C NMR (400 MHz) spectrum of 3 in DMSO $- d_6$.

Figure S6. ESI-MS spectrum of 3.

Figure S7. ESI-MS spectra of (a) 4 and (b) 5.

Figure S8. UV - visible spectra of (a) 2 [50 μ M], 4 [50 μ M] in Methanol and Characteristic d-d transition spectrum of 4 [10 mM] in DMSO (Inset), (b) 3 [50 μ M], 5 [50 μ M] in Methanol and Characteristic dd transition spectrum of 5 [10 mM] in DMSO (Inset).

Figure S9. Solid state FT-IR spectra of (a) 2, (b) 4, (c) 3, (d) 5.

Figure S10. DPPH Radical scavenging assay. (a) & (d) Graphical representation of DPPH radical scavenging by CA, 2, 4 at 30 μ M and PA, 3, 5 at 1 mM. (b) & (e) Linear regression to determine the IC₅₀ values of DPPH scavenging by 4 and 5. (c) & (f) UV-Visible absorption spectra for DPPH scavenging by 4 (0 μ M - 80 μ M) and 5 (0 mM - 2.5 mM).

Figure S11. Dye displacement studies towards *ct*-DNA binding to determine the binding fashion. (a) & (c) Graphical representation of EB ([EB] - 10 μ M) displacement by 2, 4 at 35 μ M and 3, 5

at 15 μ M. (b) & (d) Graphical representation of DAPI ([DAPI] - 10 nM) displacement by **2**, **4** at 35 μ M and **3**, **5** at 15 μ M. (e) & (g) UV-Visible absorption spectra for EB displacement by **4** (0 μ M - 50 μ M) and **5** (0 μ M - 30 μ M). (f) & (h) UV-Visible absorption spectra for EB displacement by **2** (0 μ M - 50 μ M) and **3** (0 μ M - 30 μ M).

Figure S12. UV-visible absorbance studies towards ct-DNA binding to determine binding fashion. (a) & (b) UV-visible absorption spectra for ct-DNA binding ([4]/[5] - 20 μ M) by ct-DNA (0 - 200 μ M).

Figure S13. *ct*-DNA melting studies to determine binding fashion. (**a**) The melting profile of *ct*-DNA (100 μ M) was studied by a temperature-controlled UV-Visible spectrometer at 260 nm. (**b**) & (**c**) Melting profile of *ct*-DNA (100 μ M) in the presence of **4** (10 μ M) and **5** (10 μ M) at 260 nm. (**d**) combined representation of ct-DNA melting in the presence and absence of **4** & **5**.

Figure S14. CD spectral analysis to determine *ct*-DNA binding fashion. (a) & (b) CD spectral representation of *ct*-DNA at 25 0 C (220 nm - 350 nm, ([*ct*-DNA]– 300 µm)) in presence of 4 (0 - 100 µM) and 5 (0 - 100 µM).

Figure S15. Live-dead imaging of 4T1 cells treated with 3 μ M of 4 and 5 for 24 h. Green fluorescence (FDA) corresponds to live cells, red fluorescence (PI) corresponds to dead cells, and merged images for co-localization of live and dead cells. Scale bar: 100 μ m.

Figure S16. (a) Clonogenic assay in 4T1 cells to see the regrowth on post-treatment. (b) Graphical depiction of cell viability (%) in the clonogenic assay.

Figure S17. HPLC traces of 4.

Figure S18. HPLC traces of 5.

Figure S19. HPLC traces of Cu-1.

Figure S20. Stability of **4** & **5** in Tris-EDTA buffer (pH 7.8) (**a**) Stability of **4** (100 μ M) in TE buffer (0.1% DMSO) over 0 to 24h (**b**) Stability of **5** (100 μ M) in TE buffer (0.1% DMSO) over 0 to 24h. (**c**) Stability of **4** (50 μ M) in TE buffer (0.1% DMSO) over 0 to 24h (**d**) Stability of **5** (50 μ M) in TE buffer (0.1% DMSO) over 0 to 24h. (**Insets**) Change in absorbance with time at respective λ_{max} of **4** & **5** at 100 μ M and 50 μ M concentrations.