Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Syntheses, structures and characterization of noncentrosymmetric MZnPO₄(M= K, NH₄)

Jiawei Zhao,^a Wei Wei,^a Meihui Chen ,^a Yanna Chen^{*a} and Donghai An ^{*a,b}

^aChangji University, Changji 831100, China

^bXinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.

*Corresponding authors, E-mail: adhcjxy@163.com, ynchenaa@163.com

Table S1. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å2 $\times 103$) for KZnPO₄. Useq is defined as one-third of the trace of the orthogonalized Uij tensor.

Atom	X	у	Z	U(eq)	BVS
Zn(1)	-6737(2)	-8415(3)	-1936(3)	11.9(7)	2.225
Zn(2)	-6666.67	-3333.33	-688(3)	5.7(9)	2.011
K(1)	-10000	-10000	1091(9)	18.6(17)	0.819
K(2)	-5223(5)	-4804(5)	-3754(6)	10.2(8)	1.170
P(1)	-6666.67	-3333.33	-6717(11)	6.5(16)	5.665
P(2)	-8309(9)	-6727(5)	-793(7)	16.1(12)	4.799
O(1)	-7199(19)	-5278(17)	-1370(18)	15(2)	2.124
O(2)	-8324(18)	-8038(17)	-1600(20)	20(2)	1.991
O(3)	-3333.33	-6666.67	-3470(30)	25(4)	1.914
O(4)	-5142(18)	-3012(19)	-6020(20)	16(3)	1.911
O(5)	-7760(17)	-6792(18)	877(19)	21(3)	2.040
O(6)	-9700(19)	-6868(19)	-800(20)	29(3)	2.441

Table S2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å2 $\times 103$) for NH₄ZnPO₄. Ueq is defined as one-third of the trace of the orthogonalized Uij tensor.

Atom	X	у	Z	U(eq)	BVS
N(1)	10320(60)	5100(60)	7590(80)	3(10)	5.001
N(2)	10000	10000	7610(40)	-32(7)	5.211
Zn(1)	8350(7)	6742(5)	9509(9)	15(3)	2.075
Zn(2)	6667	3333.01	5766(8)	3(3)	2.158
P(1)	8304(19)	6728(17)	5670(30)	22(5)	4.896
P(2)	6667	3333.01	9760(40)	12(5)	4.971
O(1)	10220(70)	8160(90)	9810(100)	110(40)	1.752
O(2)	7770(70)	6780(70)	7340(60)	36(17)	1.747
O(3)	6930(90)	7100(90)	10670(70)	80(20)	1.728
O(4)	7810(80)	4940(80)	10220(60)	56(17)	1.737
O(5)	7160(50)	5240(40)	4980(50)	19(9)	1.735
O(6)	6667	3333.01	7700(200)	70(40)	1.939

$Zn(1)-O(1)^1$	1.937(16)	$P(1)-K(1)^3$	3.721(8)
$Zn(1)-O(1)^2$	1.937(16)	P(1)-K(2)	3.721(6)
Zn(1)-O(1)	1.937(16)	P(1)-O(4)	1.38(2)
$Zn(1)-O(2)^3$	1.88(3)	P(2)-O(2) ⁹	1.50(3)
$Zn(1) - K(1)^4$	3.778(5)	$P(2)-O(5)^2$	1.566(17)
$Zn(1)-K(1)^5$	3.778(5)	P(2)-O(5) ¹	1.566(17)
$Zn(1)-K(1)^3$	3.778(5)	P(2)-O(5)	1.566(17)
$Zn(1)-K(1)^1$	3.712(6)	P(2)-K(1) ¹	3.647(8)
$Zn(1)-K(1)^2$	3.712(6)	$P(2)-K(1)^{11}$	3.819(6)
Zn(1)-K(1)	3.712(6)	P(2)-K(1) ¹²	3.819(6)
$Zn(2)-O(5)^5$	1.935(18)	P(2)-K(1) ⁹	3.819(6)
$Zn(2)-O(3)^{6}$	1.958(16)	P(2)-K(1)	3.647(8)
Zn(2)- O(6)	1.910(17)	$O(1)$ -K $(1)^2$	3.647(8)
$Zn(2)-K(1)^7$	3.920(5)	$O(1)$ -K $(1)^5$	3.286(19)
Zn(2)- K(1) ⁵	3.995(6)	O(1)-K(1)	2.699(16)
Zn(2)- K(1)	3.634(6)	$O(2)-K(1)^8$	3.410(4)
$Zn(2)-K(1)^8$	3.573(5)	$O(1)$ -K $(1)^{13}$	3.410(4)
$Zn(2)-K(2)^9$	3.402(4)	O(1)-K(1)	3.410(4)
Zn(2)- K(2)	3.920(6)	$O(5)-K(1)^2$	3.366(18)
$Zn(2)-O(4)^{10}$	2.044(17)	O(5)-K(1)	2.670(19)
P(1)-O(1)	1.486(16)	O(5)-K(1) ¹²	3.398(19)
P(1)-O(3)	1.548(18)	O(6)-K(2) ⁹	2.741(17)
P(1)-O(6)	1.533(17)	O(6)-K(2)	2.993(17)
P(1)-K(1)	3.786(9)	K(1)-O(4) ⁶	2.80(2)
$P(1)-K(1)^5$	3.647(9)	K(1)-O(4) ²	3.300(19)
$O(1)^1$ -Zn(1)-O(1) ²	111.2(4)	$O(1)^{12}-K(1)-O(5)^{1}$	101.9(5)
$O(1)^1$ -Zn(1)-O(1)	111.2(4)	$O(1)^{12}$ -K(1)-O(4) ²	104.6(4)
$O(1)^2$ -Zn(1)-O(1)	111.2(4)	O(1)-K(1)-O(4) ²	74.9(5)
$O(2)^{5}$ -Zn(1)-O(1)	107.7(5)	O(1)-K(1)-O(4) ⁶	103.2(5)
$O(2)^{5}$ -Zn(1)-O(1) ¹	107.7(5)	$O(5)-K(5)-O(1)^2$	115.9(5)
$O(2)^{5}$ -Zn(1)-O(1) ²	107.7(5)	$O(5)-K(5)-O(1)^{12}$	74.1(5)
$O(6)-Zn(2)-O(3)^{6}$	108.6(7)	O(5)-K(5)-O(2)	128.8(6)
$O(6)-Zn(2)-O(4)^{10}$	109.6(7)	O(5) ⁴ -K(5)-O(2)	43.7(5)
$O(5)^4$ -Zn(2)-O(3) ⁶	118.8(8)	$O(5)^{1}-K(5)-O(2)$	137.7(5)
$O(5)^4$ -Zn(2)-O(4) ¹⁰	102.2(8)	O(5)-K(5)-O(5) ⁴	138.5(5)
O(1)-K(1)-O(1) ¹²	169.8(3)	O(5) ¹ -K(5)-O(5) ⁴	138.5(5)
O(1)- K(1)-O(2)	115.3(6)	O(5)-K(5)-O(5) ¹	47.8(6)
O(1) ¹² -K(1)-O(2)	54.8(5)	O(5) ¹ -K(5)-O(4) ²	109.8(5)
$O(1)-K(1)-O(5)^4$	71.8(5)	$O(5)^{1}-K(5)-O(4)^{6}$	87.8(6)

Table S3. Selected bond distances (Å) and angles (degrees) for KZnPO₄.

$O(1)^{12}$ -K(1)-O(5) ⁴	98.4(4)	$O(4)^{6}-K(1)-O(1)^{12}$	74.0(5)
O(6) ¹⁶ -K(2)-O(6) ¹⁷	108.8(4)	$O(6)^{5}-K(2)-O(6)^{17}$	108.8(4)
O(6) ⁸ -K(2)-O(6) ¹⁶	74.7(6)	$O(4)^{6}-K(1)-O(4)^{2}$	161.5(4)
O(6) ¹⁷ -K(2)-O(6)	67.5(5)	O(1) -P(1)-O(3)	102.5(10)
$O(6)^{16}$ -K(2)-O(6)^{10}	67.5(5)	O(1) -P(1)-O(6)	112.9(11)
$O(6)^{5}-K(2)-O(6)^{10}$	175.4(5)	O(6)-P(1)-O(3)	102.3(9)
$O(6)^{5}-K(2)-O(6)^{16}$	74.7(6)	O(4)-P(1)-O(1)	113.9(11)
$O(6)^{8}-K(2)-O(6)^{5}$	74.7(6)	O(4)-P(1)-O(3)	112.7(12)
O(6) ⁸ -K(2)-O(6) ¹⁷	175.4(5)	O(4)-P(1)-O(6)	111.5(10)
O(6) ⁸ -K(2)-O(6)	108.8(4)	$O(5)^9-P(2)-O(5)^2$	111.4(8)
O(6) ¹⁰ -K(2)-O(6)	67.5(5)	$O(5)^9-P(2)-O(5)$	111.3(8)
$O(6)^{8}-K(2)-O(6)^{10}$	108.8(4)	$O(5)^9-P(2)-O(5)^1$	111.4(8)
O(6) ¹⁶ -K(2)-O(6)	175.4(5)	$O(5)^{1}-P(2)-O(5)^{1}$	107.5(9)
$O(6)^{5}-K(2)-O(6)$	108.8(4)	$O(5)^2 - P(2) - O(5)$	107.5(9)
$O(6)^{16}$ -K(2)-O(6)^{10}	108.8(4)	$O(5)^2 - P(2) - O(5)^1$	107.5(9)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y-1/2,-z+3/2 #2 -x+1,y+1/2,-z+3/2

#3 x,-y+1/2,z-1/2 #4 -x,y-1/2,-z+3/2

#5 -x+1,-y,-z+1 #6 x,y-1,z #7 x,-y-1/2,z-1/2

#8 x,-y-1/2,z+1/2 #9 x,y+1,z #10 -x,y+1/2,-z+3/2

#11 x,-y+1/2,z+1/2

Zn(1)-O(1)	1.9406(9)	P(1)-O(3)	1.5423(9)
Zn(1)-O(2)	1.9493(8)	P(2)-O(6)	1.5081(13)
Zn(1)-O(3)	1.9577(9)	P(2)-O(4)	1.5465(8)
Zn(1)-O(4)	1.9398(8)	N(1)-H(1)	0.83(3)
Zn(2)-O(5)	1.9455(8)	N(1)-H(2)	0.84(3)
Zn(2)-O(6)	1.8953(12)	N(1)-H(3)	0.864(17)
P(1)-O(2)	1.5398(8)	N(1)-H(4)	0.89(2)
P(1)-O(5)	1.5452(8)	N(2)-H(5)	0.94(3)
P(1)-O(3)	1.5423(12)	N(2)-H(6)	0.85(2)
O(1)-Zn(1)-O(2)	106.26(3)	O(1)-P(1)-O(5)	109.29(5)
O(1)-Zn(1)-O(3)	112.19(3)	O(1)-P(1)-O(3)	108.40(4)
O(1)-Zn(1)-O(4)	113.90(3)	O(4)-P(2)-O(6)	111.10(3)
O(2)-Zn(1)-O(3)	105.70(3)	O(4)-P(2)-O(4)	107.79(5)
O(2)-Zn(1)-O(4)	115.82(3)	H(1)-N(1)-H(2)	114(3)
O(3)-Zn(1)-O(4)	102.78(3)	H(1)-N(1)-H(3)	109.3(18)
O(5)-Zn(2)-O(6)	108.92(2)	H(1)-N(1)-H(4)	112(2)
O(5)-Zn(2)-O(5)	110.02(4)	H(2)-N(1)-H(3)	103.0(18)
O(2)-P(1)-O(5)	109.40(4)	H(2)-N(1)-H(4)	109(2)
O(2)-P(1)-O(3)	109.71(4)	H(3)-N(1)-H(4)	109.0(19)
O(1)-P(1)-O(2)	109.75(4)	H(5)-N(2)-H(6)	113.8(13)
O(3)-P(1)-O(5)	110.26(4)		

Table S4. Selected bond distances (Å) and angles (degrees) for NH_4ZnPO_4 .

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z+1/2 #2 -x+2,y+1/2,-z+3/2 #3 -x+2,y-1/2,-z+3/2 #4 -x+1,-y,-z+2 #5 -x+2,-y,-z+2 #6 x,y+1,z #7 x,-y-1/2,z-1/2 #8 x,-y+1/2,z-1/2 #9 x,-y-1/2,z+1/2 #10 -x+2,-y,-z+1 #11 x,y-1,z

Figure S1. Powder XRD patterns of (a) $KZnPO_4$ and (b) NH_4ZnPO_4 .

Figure S2. UV-vis-NIR diffuse reflectance spectra of (a) KZnPO₄ and (b) NH₄ZnPO₄.

0a0

Figure S3.Virtual electron (VE) (a) occupied, and virtual electron (VE) (b)unoccupied orbitals of KZnPO₄;Virtual electron (VE) (c) occupied, and virtual electron (VE) (d)unoccupied orbitals of NH₄ZnPO₄.