Electronic supplementary information for:

Cascaded Utilization of Magnetite Nanoparticles@Onion-Like Carbons from Wastewater Purification to Supercapacitive Energy Storage

Authors

Xin Jiao,^{a,b,c,d,e} Min Xiao,^{a,b,c,d} Fengshi Cai,^{a,b,c,d} Yingchun Fan,^{a,b,c,d} Shuaipeng Meng,^{a,b,c,d} Xiude Guan,^e Huiquan Wang,^{a,b,c,d} Chenguang Zhang^{a,b,c,d}*

Affiliations

^a School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China.

^b Institute for Green Nanotechnology, Tianjin University of Technology, Tianjin 300384, PR China.

^c Tianjin Key Laboratory for Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin 300384, PR China.

^d Key Laboratory of Display Materials and Photoelectric Devices, Tianjin University of Technology, Ministry of Education, Tianjin 300384, PR China.

^e College of Materials Engineering, Shanxi College of Technology, Shuozhou, Shanxi Province 036000, PR China.

Corresponding author:

Email: cgzhang@tjut.edu.cn (Chenguang Zhang).

Supplementary figures

Fig. S1. TG curves of interconnected Fe₃O₄@OLCs and insufficiently etched interconnected Fe₃O₄@OLCs at a heating rate of 10 °C min⁻¹ from 30 to 800 °C in air.

Fig. S2. Magnetic hysteresis loop of insufficiently etched interconnected Fe₃O₄@OLCs.

Fig. S3. Variation of the adsorption capacities of interconnected Fe_3O_4 @OLCs with treated period.

Fig. S4. Schematic illustration of the difference in MB adsorption mechanisms between interconnected $Fe_3O_4@OLCs$ and insufficiently etched interconnected $Fe_3O_4@OLCs$.

Fig. S5. XRD profile of the N-doped HOLCs.

Fig. S6. CV curves of (a) insufficiently etched interconnected Fe₃O₄@OLCs and (b) N-doped porous carbon structure at different scan rates from 5 to 200 mV s⁻¹ in three-electrode testing system. Specific gravimetric capacitances (C_m) calculation results of (c) Fe₃O₄@OLCs and (d) N-doped HOLCs at different scan rates from 5 to 200 mV s⁻¹.

Fig. S7. Electrochemical kinetic analysis of N-doped HOLCs. Percentage of capacitivecontrolled charge contribution from EDLC based on CV measurements at scan rates of (a) 1, (b) 2, (c) 5, (d) 10 and (e) 20 mV s⁻¹.

Fig. S8. Nyquist plot of supercapacitor.

Fig. S9. Specific gravimetric capacitances (C_m) versus current densities of the supercapacitor device.

Fig. S10. Cycling stability of supercapacitor measured at a charging-discharging current density of 10 A g^{-1} .

Fig. S11. 27 red LEDs powered by three supercapacitors connected in series.

Materials	Electrolyte	Energy density (Wh kg ⁻¹)	Power density (kW kg ⁻¹)	Cycle stability	Ref.
Sulfur-doped carbon nano-onions	1M Na ₂ SO ₄	10.6	0.1	95% after 10000 cycle	S1
Quinone-decorated onion-like carbon	$1 M H_2 SO_4$	6.4	19.2	90% after 10000 cycle	S2
Nori:ZnCl ₂ -2:1	6M KOH	6.1	0.05	96% after 5000 cycle	S3
ZIF-8 derived carbon	6M KOH	4.66	0.21	96% after 10000 cycle	S4
HPCF	6M KOH	9.1	3.5	95% after 10000 cycle	S5
PANI-carbon nanotube composites	H ₂ SO ₄ /PVA	5.8	1.1	83.2% after 2000 cycle	S6
TPI-P-700	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	10.5	0.5	100% after 10000 cycle	S 7
Phosphorus-doped porous carbon	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	10.6	0.22	98.3% after 5000 cycle	S 8
HPCSLS-700	7М КОН	8.6	0.014	92% after 10000 cycle	S9
N-C-HPCS	6M KOH	6.1	0.25	108% after 10000 cycle	S10
N-doped HOLCs	ЗМ КОН	11.3 7.9	0.51 8.9	94.6% after 10000 cycle	This Work

Table S1. Comparisons of energy storage performances of supercapacitor based on N-doped HOLCs with other carbon-based supercapacitors.

Reference:

S1. G. Dhakal, D. Mohapatra, T.L. Tamang, M. Lee, Y.R. Lee, J.-J. Shim, Energy, 2021, 218, 119436.

S2. M. Bhaumik, K. Raju, I. Arunachellan, T. Ludwig, M.K. Mathe, A. Maity, S. Mathur, Electrochim. Acta, 2020, **342**, 136111.

S3. B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Energy Environ. Sci., 2016, 9, 102-106.

S4. H. N. Abdelhamid, S. A. Al Kiey, W. Sharmoukh, Appl. Organomet. Chem., 2021, 36, 1.

S5. Y. Zhang, R. Shao, W. Xu, J. Ding, Y. Wang, X. Yan, W. Shi, M. Wang, Chem. Eng. J., 2021, **419**, 129576.

S6. Y. Wang, S. Tang, S. Vongehr, J. A. Syed, X. Wang, X. Meng, Scientific Reports 2016, 6, 12883.

S7. D. Yan, Y. Wu, R. Kitaura, K. Awaga, J. Mater. Chem. A, 2019, 7, 26829-26837.

S8. G. Lin, Q. Wang, X. Yang, Z. Cai, Y. Xiong, B. Huang, RSC Adv. 2020, 10, 17768.

S9. J. Pang, W. Zhang, J. Zhang, G. Cao, M. Han, Y. Yang, Green Chem., 2017, 19, 3916-3926.

S10. S. Park, B. Seo, D. Shin, K. Kim, W. Choi, Chem. Eng. J., 2022, 433, 134486.