SUPPORTING INFORMATION

Terpyridine-based ruthenium complexes containing 4,5-diazafluoren-9-one ligand with light-driven enhancement of biological activity

Francisca Mayara Santos de Alencar,^a Florencio Sousa Gouveia Jr,^a Geângela de Fátima Sousa de Oliveira,^a Alexandre Lopes Andrade,^b Mayron Alves de Vasconcelos,^c Alejandro Pedro Ayala,^d Ana Claudia Silva Gondim,^a Idalina Maria Moreira de Carvalho, ^a Carlos André Ferreira Moraes,^e Marcos Vinícius Palmeira de Mello, ^e Alzir Azevedo Batista, ^e Luiz Gonzaga de França Lopes,^{a*} Eduardo Henrique Silva Sousa^{a*}

a- Group of Bioinorganic, Department of Organic and Inorganic Chemistry, Federal University of Ceara, Fortaleza, Brazil

b- Integrated Biomolecular Laboratory, Department of Pathology and Legal Medicine,Federal University of Ceara, Fortaleza, Brazil

c - Faculty of Education of Itapipoca, State University of Ceara (UECE), Itapipoca Brazil.

d- Department of Physics, Federal University of Ceara, Fortaleza, Brazil

e - Department of Chemistry, Federal University of São Carlos, Fortaleza, Brazil

*Corresponding authors: eduardohss@dqoi.ufc.br; lopeslu@dqoi.ufc.br

Fig. S1. For the **MPD2** complex: A) ¹H NMR in $(CD_3)_2SO$; B) Electronic absorption spectra in acetonitrile (3 x 10⁻⁵ mol L⁻¹) at 25 °C; C) HSQC in $(CD_3)_2SO$; D) Cyclic voltammogram in 0.1 mol L⁻¹ TBAPF₆/acetonitrile at 25 °C, at a scan rate of 0.100 Vs⁻¹, using glassy carbon, platinum wire and Ag|AgCl as working, auxiliary and reference electrodes, respectively (ferrocene redox pair used as 0.0 V reference). The black dashed line represents a swept potential for the electrolyte solution only.

Fig. S2. 13 C NMR for MPD1 (A) and COSY (B) in (CD₃)₂SO.

Fig. S3. ¹³C NMR for MPD2 (A) and COSY (B) in (CD₃)₂SO.

Fig. S4. High resolution mass spectrometry (ESI-TOF) for **MPD1** (A) and **MPD2** (B) in acetonitrile.

638 639 640 641 642 643 644 645 Counts vs. Mass-to-Charge (m/z)

646

647

648 649 650 651 652 653 654

630 631 632 633 634 635 636 637

Fig. S5. Experimental FTIR spectra of (A) MPD1 and (B) MPD2 complexes dispersed in KBr (red lines) and calculated IR spectrum ions complexes (black lines). Inset: shows optimized structures of **MPD1** and **MPD2** in vacuum.

Fig. S6. Cyclic voltammograms of DFO (top, left), phtpy (top, right) and CH₃-phpty ligands (middle, left) carried out in 0.1 mol L^{-1} TBAPF₆ electrolyte in acetonitrile, at a scan rate of 0.100 Vs⁻¹, using glassy carbon, platinum wire and Ag|AgCl as working, auxiliary and reference electrodes, respectively (ferrocene redox pair used as 0.0 V reference); black dashed line represents the electrochemical scan of only the 0.1 mol L^{-1} TBAPF₆ electrolyte in acetonitrile, and DFO ligand reduction scheme (bottom).

Fig. S7. Electronic absorption spectra of **DFO** (top, left), **phtpy** (top, right), **phtpy-CH**₃ (bottom, left), **MPD1** and **MPD2** (3 x 10^{-5} mol L⁻¹, bottom right), in acetonitrile at 25 °C.

Fig. S8. Monitoring stability of **MPD1** (3 x 10^{-5} mol L⁻¹) under the following conditions: in 0.1 mmol L⁻¹ phosphate buffer pH 7.4 (A), DMSO (B), acetonitrile (C) and methanol (D) in the dark for 2 h; or in 0.1 mmol L⁻¹ phosphate buffer pH 7.4 (E) monitored for 24 h and in 0.1 mmol L⁻¹ phosphate buffer pH 7.4 (F) irradiated with blue light for 2 h at 25 °C.

Fig. S9. Monitoring stability of **MPD2** ($3 \times 10^{-5} \text{ mol } \text{L}^{-1}$) under the following conditions: in 0.1 mmol L⁻¹ phosphate buffer pH 7.4 (A), DMSO (B), acetonitrile (C) and methanol (D) in the dark for 2 h; or in 0.1 mmol L⁻¹ phosphate buffer pH 7.4 (E) monitored for 24 h and in 0.1 mmol L⁻¹ phosphate buffer pH 7.4 (F) irradiated with blue light for 2 h at 25 °C.

Fig. S10. Production of reactive oxygen species as singlet oxygen using DPBF and SOSG. Panel A and B show the emission spectra of DPBF 10 μ mol L⁻¹ with MPD1 and MPD2 10 μ mol L⁻¹ upon blue light irradiation, respectively, in acetonitrile. Panels D and E show emission spectra of similar sample upon red light irradiation. Panels G and H show emission spectra of similar sample upon blue light irradiation in methanol. Panels C and I show time-dependent curves for relative emission for quantum yield measurements of samples irradiated with blue light in acetonitrile or methanol, respectively, while panel F shows these measurements irradiated with red light in acetonitrile. The black squares are of DPBF only, red triangles of MPD1, green diamond of MPD2 and blue circles of the standard probe ([Ru(bpy)₃]²⁺). Panels J, K and L show the emission spectra of SOSG 5 μ mol L⁻¹ with MPD1 and MPD2 10 μ mol L⁻¹ upon blue light irradiation, respectively, in methanol.

Fig. S11. Production of reactive oxygen species as hydroxyl radical using APF. Panels A and D show the emission spectra of MPD1 and MPD2 10 μ mol L⁻¹ with APF 5 μ mol L⁻¹ upon blue light irradiation in 0.1 mmol L⁻¹ tris buffer pH 7.4, respectively; Panels B and E show emission spectra of MPD1 and MPD2 with d-mannitol upon blue light irradiation. Panels C and F shows time-dependent curves for relative emission for quantum yield measurements of hydroxyl radicals, irradiated with blue light, where black squares are of APF only, blue circles are of the metal complexes and red triangles are of the metal complexes+d-mannitol. Panel G shows the emission spectra for a sample of only APF irradiated with blue light.

Fig. S12. Monitoring the mixture of MPD1 and MPD2 35 μ mol L⁻¹; NBT 50 μ mol L⁻¹ and glutathione 1.5 mmol L⁻¹ in 0.1 mol L⁻¹ phosphate buffer pH 7.4, for 1 h under the following conditions: A) in the dark; B) irradiated with blue light. Other reaction controls involving the mixture of the metal complexes with NBT or GSH: C) GSH and MPD1 only irradiated with blue light; D) NBT and MPD1 only irradiated with blue light; E) GSH and MPD2 only irradiated with blue light; F) NBT and MPD2 only irradiated with blue light.

Fig. S13. Detection of the superoxide radical by the complexes **MPD1** and **MPD2** (35 μ mol L⁻¹), in 0.1 mol L⁻¹ phosphate buffer pH 7.4, GSH 1.5 mmol L⁻¹, NBT 50 μ mol L⁻¹, SOD 4.4 U/mL, under the following conditions: a) **MPD1**, irradiated with blue light, with GSH, NBT and SOD; b) **MPD2**, irradiated with blue light, with GSH, NBT and SOD; c) Plot of the rate of superoxide radical production from the reaction of **MPD1** and **MPD2** complexes.

Fig. S14. Proposal of a catalytic cycle for the reduction of the metal complexes by GSH with the production of superoxide radical.

Fig. S15. DNA binding measurements. Panels show titration of MPD1 (top) and MPD2 (bottom) with calf thymus DNA monitored by UV-vis electronic spectroscopy, in 0.1 mmol L^{-1} tris-HCl pH 7.4 at 25 °C.

Fig. S16. Photocleavage of 20 μ mol L⁻¹ (in base pairs) of pUC19 DNA in the presence of **MPD1** or **MPD2** and GSH (5 mmol L⁻¹) either in the dark or upon 1 h of blue LED irradiation (negative images). In all experiments, lane 1 contains only linear DNA ladder, while lanes 2 and 9 contain only pUC19 DNA, and lanes 3-8 or 10-15 contained pUC19 with **MPD1** (Panel A) and **MPD2** (Panel B) at increasing concentrations (5, 10, 20, 30, 40 and 60 μ mol L⁻¹). The black and blue boxes indicate that the experiment was carried out in the dark or with blue light irradiation.

Fig. S17. Electronic spectra for excluded samples upon treatment onto a biospin column P30 (Bio-rad). **MPD1** (A) and **MPD2** (B) (DNA, complex +DNA (dark), complex +DNA (light, $\lambda_{irr.}$ =453 nm), DNA, complex).

Table S1. (Carbon-13	NMR sig	nal assig	gnment for tl	he MPD1	complex.	
		¹³ C chemic	cal shifts c	of the MPD1			
Group (Ring A)	δ(ppm)	Ring B	δ(ppm)	Ring C	δ(ppm)	Ring D	δ(ppm)
C5	146,0	C5'	136,83	C5"	137,62	C1	128
C6	120	C6'	124,3	C6"	124,00	C2'	129,5

136,83

128

153,9

C7''

C8"

C9"

137,62

130,6

155

C3

C4

129,7 136,0

C7'

C8'

C9'

C7	159,14	
C8	159,4	
C9	120	
DFO ligand	δ(ppm)	
C2	155	
C3	128,8	
C4	130,83	
C5	130,06	
C6	187,7	
C7	131,9	
C8	132.00	
C9	130,94	
C10	155,4	
C11	167,32	
C12	166,13	

Table S2. Carbon-13 NMR	signal	assignment	for the	MPD2 cc	mplex.
-------------------------	--------	------------	---------	---------	--------

Group (Ring A)	δ(ppm)	Ring B	δ(ppm)	Ring C	δ(ppm)	Ring D	δ(ppm)
C5	146	C5'	154,00	C5"	154,00	C1	140,38
C6	124	C6'	124,3	C6"	127,85	C2'	129,5
C7	159,13	C7'	137,55	C7''	137,62	C3	129,56
C8	154	C8'	155	C8"	155,4	C4	134
С9	120	C9'	154,00	C9"	130,6	CH ₃	21,5
DFO ligand	δ(ppm)	R-CH ₃	δ(ppm)				
C2	155	CH ₃	21,5				
C3	128,8						
C4	137,62						
C5	130,70						
C6	187,95						
C7	131,9						
C8	137,62						
С9	130,98						
C10	155,4						
C11	167,32						
C12	166,13						

¹³C chemical shifts of the MPD2

Table S3. Selected experimental bands in the FTIR spectrum and the theoretical

	MPD1			MPD2	
Experimental	DFT	Assignments	Experimental	DFT	Assignments
557	516	δ(PF ₆)	559	612	δ(PF ₆)
850	788	$\nu(PF_6)$	850	788	$\nu(PF_6)$
1580	1516	v(CN)	1573	1540	v(CN)
1640	1644	v(CC)	1608	1628	v(CC)
1735	1716	v(CO)	1737	1716	v(CO)
3044	3196	v(Csp ²)	2920	3180	v(Csp ³)
-	_	-	3053	3228	v(Csp ²)

frequencies, $v(cm^{-1})$ of MPD1 and MPD2.

Table S4. Selected UV–Vis Energy Transitions at the TD-DFT/B3LYP Level for

Exptl.	Calc. λ	Maion contribution	Chanastan	
λ (nm)	(nm)	Major contribution	Character	
		H-1→L+1 (66%)	$p\pi^* (phtpy) \leftarrow d\pi (Ru)$	MLCT
		HOMO→L+3 (28%)	$p\pi^* (phtpy) \leftarrow d\pi (Ru)$	MLCT
510	468	H-2→L+1 (31%)	$p\pi^* (phtpy) \leftarrow d\pi (Ru)$	MLCT
		H-1 → L+2(62%)	$p\pi^*$ (DFO) $\leftarrow d\pi$ (Ru)	MLCT
		H-1 → L+3(94%)	$p\pi^* (phtpy) \leftarrow d\pi (Ru)$	MLCT
		H-3→L+1 (90%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL
364	353	H-4 → L+1 (67%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL
		H-3 → L+3 (11%)	$p\pi^*$ (phtpy) $\leftarrow p\pi$ (phtpy)	IL
214		H-3→L+1 (90%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL
514	-	H-4 → L+1 (67%)	$p\pi^*$ (phtpy) $\leftarrow p\pi$ (phtpy)	IL
		H-7→L+1 (95%)	$p\pi^*$ (DFO) $\leftarrow p\pi$ (phtpy)	LLCT
283	205	H-8→L+3 (89%)	$p\pi^*$ (phtpy) $\leftarrow p\pi$ (Cl)	LLCT
283	293	H-6 → L+3 (30%)	$p\pi^*$ (phtpy) $\leftarrow p\pi$ (Cl)	LLCT
		H-4 → L+3 (52%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL
		H-4→L+6 (60%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL
231	243	H-10 → L+3 (49%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL
		H-4 → L+5 (36%)	$p\pi^*$ (phtpy) $\leftarrow p\pi$ (phtpy)	IL

MPD1 in acetonitrile.

Table S5. Selected UV–Vis Energy Transitions at the TD-DFT/B3LYP Level for

Exptl.	Calc. λ			
λ (nm)	(nm)	Major contribution	Character	
		H-2→L+1 (58%)	$p\pi^* (phtpy) \leftarrow d\pi (Ru)$	MLCT
513	470	H-1→L+2 (35%)	$p\pi^*$ (DFO) $\leftarrow d\pi$ (Ru)	MLCT
		H-2 → L+2(39%)	$p\pi^*$ (DFO) $\leftarrow d\pi$ (Ru)	MLCT
		HOMO → L+3(43%)	$p\pi^* (phtpy) \leftarrow d\pi (Ru)$	MLCT
364	353	H-3→L+1 (95%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL
504	555	H-8→LUMO (95%)	$p\pi^*$ (DFO) $\leftarrow p\pi$ (Cl)	LLCT
		H-6→L+1 (20%)	$p\pi^* (phtpy) \leftarrow p\pi (Cl)$	LLCT
310	-	H-4→L+1 (41%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL
		H-3 → L+3 (31%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL
		H-6→L+2 (66%)	$p\pi^* (DFO) \leftarrow p\pi (Cl)$	LLCT
		H-5 → L+1 (19%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL
276	293	H-6→L+1 (39%)	$p\pi^* (phtpy) \leftarrow p\pi (Cl)$	LLCT
		H-6 → L+3 (34%)	$p\pi^*$ (phtpy) $\leftarrow p\pi$ (Cl)	LLCT
		H-4 → L+3 (53%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL
		H-3→L+7 (74%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL
257	241	H-10 → L+3 (43%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL
		H-4 → L+5 (42%)	$p\pi^* (phtpy) \leftarrow p\pi (phtpy)$	IL

MPD2 in acetonitrile.

Metal Complex	RED LED		P. aeruginosa ATCC 27854	<i>E. coli</i> ATCC 11303
	On	^a MIC	ND	ND
MDD1	On	^b MBC	ND	ND
MEDI	Off	MIC	ND	ND
	OII	MBC	ND	ND
		MIC	125	125
	On		(256.48)	(256.48)
MDD1		MBC	125 (256.48)	ND
MPD2		MIC	125	125
	Off	MIC	(256.48)	(256.48)
	OII	MBC	125	ND
			(256.48)	
Metal Complex	BLUE LED		P. aeruginosa	E. coli
			ATCC 27854	ATCC 11303
	BLUE	MIC	ND	ATCC 11303 ND
	On	MIC MBC	ND ND	ND ND
MPD1	On	MIC MBC MIC	ND ND ND	ATCC 11303NDNDND
MPD1	On Off	MIC MBC MIC MBC	ND ND ND ND ND	ATCC 11303 ND ND ND ND
MPD1	On Off	MIC MBC MIC MBC	ATCC 27854 ND ND ND 125	ATCC 11303 ND ND ND 125
MPD1	On Off	MIC MBC MIC MBC MIC	ATCC 27854 ND ND ND 125 (256.48)	ATCC 11303 ND ND ND 125 (256.48)
MPD1	On Off On	MIC MBC MIC MBC MIC MBC	ATCC 27854 ND ND ND 125 (256.48) 125 (256.48)	ATCC 11303 ND ND ND 125 (256.48) ND
MPD1 MPD2	On Off On	MIC MBC MIC MBC MIC	ATCC 27854 ND ND ND 125 (256.48) 125 (256.48) 125 (256.48) 125 (256.48)	ATCC 11303 ND ND ND 125 (256.48) ND 125
MPD1 MPD2	On Off On	MIC MBC MIC MBC MIC MBC	ATCC 27854 ND ND ND 125 (256.48) 125 (256.48) 125 (256.48)	ATCC 11303 ND ND ND 125 (256.48) ND 125 (256.48)

Table S6. Antimicrobial Assay using MPD1 and MPD2.

 aMinimum inhibitory concentration. bMinimum bactericidal activity. *MIC and MBC reported in $\mu g/mL~(\mu M).~(ND)$ not detected.