Supporting Information

Two amino-functionalized metal-organic frameworks with different topologies for C2H2/C2H⁴ separation

Yue Li,^a Mingming Xu,^a Hongyan Liu,^a Xiaokang Wang,*a Yutong Wang,^a Meng Sun,^a Weidong Fan*ab and Daofeng Sun*ab

^a School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China. ^b State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China. **Corresponding author E-mail*: xiaokangwang0625@163.com, wdfan@upc.edu.cn, dfsun@upc.edu.cn

Table of Contents

- S1. Materials and instrumentation
- S2. Calculation of isosteric enthalpy of adsorption (Q_{st})
- S3. Calculation of selectivity via ideal adsorption solution theory (IAST)
- S4. Synthesis of Ligands
- S5. Synthesis of MOFs
- S6. Single crystal X-ray Crystallography
- S7. Powder X-ray Diffraction
- S8. ¹H-NMR spectral data
- S9. Thermogravimetric Analysis
- S10. IR spectrum
- S11. SEM images
- S12. Structure diagram of UPC-122
- S13. Adsorption isotherms of UPC-122 at 273 K
- S14. Adsorption sites simulation based on GCMC
- S15. References

1. Materials and instrumentation

The reagents and solvents were commercially available and were used as received without further purification. Infrared (IR) spectroscopy spectra were collected on a Nicolet 330 FTIR Spectrometer within the 4000–400 cm⁻¹ region. Thermogravimetric analysis (TGA) was performed on a Mettler Toledo TGA under N_2 flow and heated from room temperature to 900 °C (at 10 °C min⁻¹). Powder X-ray diffraction measurements were carried out on an analytical X-Pert pro diffractometer with Cu-Kα radiation (γ = 1.5478 Å). The ¹H NMR spectrum was collected using a 400 MHz Varian INOVA spectrometer and was referenced to the residual solvent peak. To obtain the crystallographic data, UPC-121 and UPC-122 were taken from the mother liquid without further treatment. They were transferred to an oil environment and mounted onto a loop for single crystal X-ray data collection. All crystals data were collected with a SuperNova diffractometer equipped with mirror Cu-K α radiation (λ = 1.54184 Å) and an Eos CCD detector. The data was collected with a ω-scan technique and an arbitrary φ-angle. Data reductions were performed with the CrysAlisPro package, and an analytical absorption correction was performed. All the structures were solved by the direct method using the SHELXS program of the SHELXTL package and refined by the full-matrix least-squares method with SHELXL.¹

Gas adsorption–desorption measurements of N_2 , C_2H_2 , and C_2H_4 on UPC-121 and UPC-122 were collected on the Micromeritics ASAP 2020. The temperatures of 77 K, 273 K, and 298 K were maintained with a liquid nitrogen bath, an ice-water bath, and under room temperature, respectively. The measurements were carried out at 77 K (N₂), 273 K (C₂H₂ and C₂H₄), 298 K (C₂H₂ and C₂H₄). The BET surface area was calculated using multi-point BET equation with the P/P_0 range of 0.05-0.35. Pore volume was calculated with the maximal adsorption capacity. Pore size distribution was calculated with the non-local density functional theory.

2. Calculation of isosteric heat of adsorption (Qst)

Firstly, the virial equation (eqn (1)) was used to fit the gas adsorption isotherms at 273 K and 298 K, and then the obtained parameters were inserted into the formula (eqn (2)) to obtain the isosteric heat of adsorption (Q_{st})

ln $P = \ln N + 1/T \Sigma m i = 0$ $a_iN^i + \Sigma n i = 0$ b_iN^i (1)

 $Q_{st} = - R \Sigma m \; i{=}0 \; a_i N^i \left(2 \right)$

In the calculation, m=5, and n=2

3. Calculation of selectivity via ideal adsorption solution theory (IAST)

The gas adsorption isotherms were first fitted to a dual-site Langmuir–Freundlich

(DSLF) model (eqn (3)),

 $q=(q_{sat}A^bAp^{aA})/(1+b_Ap^{aA})+(q_{sat}B^bBp^{aB})/(1+bBp^{aB})$ (3)

where q is the amount of adsorbed gas (mmol g^{-1}), P is the bulk gas phase pressure (atm), q_{sat} is the saturation amount (mmol g⁻¹), *b* is the Langmuir–Freundlich parameter (atm^{-α}), and α is the Langmuir–Freundlich exponent (dimensionless) for two adsorption sites A and B indicating the presence of weak and strong adsorption sites.

IAST starts from the Raoult's Law type of relationship between the fluid and adsorbed phase,

$$
P_i = Py_i = P0 \, ix_i \, (4)
$$

 Σn $i=1x_i=\Sigma n$ $i=1$ Pi $P0$ $i=1$ (5)

where P_i is the partial pressure of component i (atm), P is the total pressure (atm), and yi and xi represent mole fractions of component i in gas and the adsorbed phase (dimensionless). $P0$ *i* is the equilibrium vapour pressure (atm).

In IAST, $P0$ *i* is defined by relating to spreading pressure π ,

 $\pi S/RT = \int P \, 0qi(Pi)/PidPi = \Pi(constant)$ (6)

where π is the spreading pressure, *S* is the specific surface area of the adsorbent (m² g⁻¹), *R* is the gas constant (8.314 J K⁻¹ mol⁻¹), *T* is the temperature (K), and $q_i(P_i)$ is the single component equilibrium obtained from isotherms (mmol g^{-1}).

For a DSLF model, we have an analytical expression for the integral,

 $\int P \cdot Qqi(Pi)/PidPi = \Pi(constant) = q_{satA}/\alpha_A * \ln \left[1+b_A(P0i)^{aA}\right] + q_{satB}/\alpha_B * \ln \left[1+b_A(P0i)^{aA}\right]$

$$
\left[1+bB(P0 i)^{aB}\right](7)
$$

The isotherm parameters are derived from the previous fitting. For a binary component system the unknowns will be Π , $P0$ 1, and $P0$ 2 which can be obtained by simultaneously solving eqn (5) and (7) .

The adsorbed amount of each compound in a mixture is

 $qmix$ $i = x_i q_i$ (8) $1/qT = \sum n_i =1 x_i/q_i (P0 i) (9)$

where q_{mix} is the adsorbed amount of component *i* (mmol g^{-1}), and $q\tau$ is the total adsorbed

amount (mmol g^{-1}).

The adsorption selectivities S ads were calculated using eqn (10). $Sads = (q1/q2)/(P_1/P_2)$ (10)

In this study, IAST calculations were carried out assuming a binary mixed gas with a molar

ratio of 50:50, 10:90 and 1:99 at 298 K and pressures up to 1 atm.2, ³

4. Synthesis of Ligands

Scheme S1. Synthetic procedures of the **H2APDA** ligand.

Synthesis of H2APDA:

(1) Dimethyl 4,4'-(4-aminopridine-3,5-diyl)dibenzoate

4-amino-3, 5-dibromopyridine (1.26 g, 5.00 mmol), 4-methoxycarbonyl phenylboric acid (2.16 g, 12.00 mmol), Pd(PPh₃)₄ (0.29 g, 0.25 mmol) and K₂CO₃ (3.32 g, 24.00 mmol) were placed in a 500 mL two-necked round bottom flask under a N_2 gas atmosphere. The flask was further charged with a 200 mL of dry 1,4-dioxane, and the contents were heated for 48 h. After the mixture was cooled to room temperature, the solvent was removed, water was added. The water phase was washed with CH_2Cl_2 . After the solvent was removed, the crude product was purified by column chromatograph.⁴ ¹H NMR (400 MHz, CDCl₃) 3.96 (s, 6H), 4.39(s, 2H), 7.57(d, 4H), 8.17(s, 2H), 8.20(d, 4H).

(2) 4,4'-(4-aminopridine-3,5-diyl)dibenzoic acid

4,4'-(4-aminopyridine-3,5-diyl)dimethyl dibenzoate was dissolved in THF (60 mL), CH₃OH (60 mL) and H₂O (60 mL), then 50 mL 2 M NaOH aqueous solution was added. The mixture was stirred at 60 ℃ overnight. The organic phase was removed, the aqueous phase was acidified ($pH=2~3$) with diluted hydrochloric acid to give white precipitate, which was filtered and washed with water several times. ¹H NMR (400 MHz, DMSO-d⁶) 7.34 (s, 2H), 7.64 (d, 4H), 8.09 (d, 4H), 8.24 (s, 2H), 13.10 (s, 2H).

5. Synthesis of MOFs

Synthesis of UPC-121

 $H₂APDA$ (5.0 mg, 0.025 mmol) and $MnCl₂·4H₂O$ (14.4 mg, 0.0728 mmol) in 3 mL of $DMA:C₂H₅OH:H₂O$ (5:2:1) were ultrasonically dissolved in a Pyrex vial. The mixture was heated in an oven at 100 °C for 24 h. After cooling down to room temperature, dark brown crystals were collected by filtration.

Synthesis of UPC-122

H₂APDA (5.0 mg, 0.025 mmol) and Ni(NO₃)₂·6H₂O (44.8 mg, 0.154 mmol) in 3 mL of DMA: $C_2H_5OH:H_2O(5:2:1)$ were ultrasonically dissolved in a Pyrex vial. The mixture was heated in an oven at 100 °C for 24 h. After cooling down to room temperature, green flake crystals were collected by filtration.

6. Single crystal X-ray Crystallography

Compound	UPC-121	UPC-122
CCDC	2141833	2141832
Formula	$C_{9.5}H_6Mn_{0.5}NO_{1.83}$	$C_{38}H_{33}N_4Ni_3O_{13}$
Formula weight(g/mol)	190.96	929.81
Temperature/K	294.9(4)	150.01(10)
Crystal system	hexagonal	trigonal
Space group	$P-62c$	R ₃
$a/\text{\AA}$	13.1365	23.5121
$b/\text{\AA}$	13.1365	23.5121
$c/\text{\AA}$	17.7462	38.3738
α deg	90	90
β deg	90	90
γ / deg	120	120
V/\AA ³	2652.1	18371.7
\overline{Z}	12	9
μ/mm^{-1}	6.284	1.095
F(000)	1166.0	4293.0
Radiation	Cu Kα (λ = 1.54184 Å)	Cu Kα (λ = 1.54184 Å)
GOF on F^2	1.043	0.921
Reflections collected	6261	15185
R_{int}	0.0479	0.0468
Data	1647	9324
Restraints	6	94
parameters	127	524
R1 $[I > 2\sigma(I)]$	0.0741	0.0654
$wR2$ [I > 2σ(I)]	0.2064	0.1623
R1 (all data)	0.0893	0.0950
wR2 (all data)	0.2258	0.1850

Table S1. Crystal data and structure refinement for UPC-121 and UPC-122.

Atom	Atom	Length/ \AA
Mn1	O ₁	2.196(6)
Mn1	O1 ¹	2.196(6)
Mn1	$O2^2$	2.248(9)
Mn1	$O2^3$	2.248(9)
Mn1	N1 ⁴	2.188(4)
Mn1	O ₃	2.042(2)

Table S2. Bond Lengths for UPC-121.

Table S3. Bond Lengths for UPC-122.

7. Powder X-ray Diffraction

Figure S1. The PXRD patterns of UPC-121.

Figure S2. The PXRD patterns of UPC-122.

8. ¹H-NMR spectral data

Figure S3. ¹H-NMR spectrum of Ligand **H2APDA**.

9. Thermogravimetric Analysis

Figure S4. The TGA curves of UPC-121.

Figure S5. The TGA curves of UPC-122.

10. IR spectrum

Figure S6. FT-IR spectrum of UPC-121.

Figure S7. FT-IR spectrum of UPC-122.

11. SEM images

Figure S8. SEM image of UPC-121.

Figure S9. SEM image of UPC-122.

12. Structure diagram of UPC-122

Figure S10. (a) Structure diagram of UPC-122 along C-axis; (b) A three-dimension diagram of UPC-122.

13. Adsorption isotherms of UPC-122 at 273 K

14. Adsorption sites simulation based on GCMC

The Grand Canonical Monte Carlo (GCMC) calculations, performed by SORPTION code embedded in the Material Studio software, were carried out to study the C_2H_2/C_2H_4 adsorption capacity of UPC-122 at given adsorption 298 K and 1 atm pressure. The atomic locations were derived from the experimental crystal data. In view of the size of the task to complete the calculations using a whole MOF unit cell, the MOF framework is not geometrically optimized. Periodic boundary conditions were applied in three dimensions. The favorable adsorption sites were simulated by the locates task. In the simulations, we have modeled the framework and gas molecule as rigid and the universal force field (UFF) was applied. Specifically, the van der Waals interactions with a cutoff of 18.5 Å were depicted by the Lennard-Jones potential.

15. References

- 1. Y. Wang, L. Feng, W. Fan, K. Y. Wang, X. Wang, X. Wang, K. Zhang, X. Zhang, F. Dai, D. Sun and H.-C. Zhou, *J. Am. Chem. Soc.*, 2019, **141**, 6967–6975.
- 2. W. Fan, S. Yuan, W. Wang, L. Feng, X. Liu, X. Zhang, X. Wang, Z. Kang, F. Dai, D. Yuan, D. Sun and H.-C. Zhou, *J. Am. Chem. Soc.*, 2020, **142**, 8728–8737.
- 3. Y. Wang, C. Hao, W. Fan, M. Fu, X. Wang, Z. Wang, L. Zhu, Y. Li, X. Lu, F. Dai, Z. Kang, R. Wang, W. Guo, S. Hu and D. Sun, *Angew. Chem. Int. Ed. Engl.*, 2021, **60**, 11350–11358.
- 4. N. Xu, Q. Zhang, B. Hou, Q. Cheng and G. Zhang, *Inorg Chem*, 2018, **57**, 13330–13340.