Supporting Information

Hydro-Coupling of Isocyanates Promoted by 1,2-Bis(arylimino)acenaphthene Aluminum Hydrides

Tatyana S. Koptseva¹, Alexandra A. Skatova¹, Mikhail V. Moskalev¹, Roman V. Rumyantcev¹ and Igor L. Fedushkin^{1*}

¹G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603137, Russian Federation, igorfed@iomc.ras.ru

Experimental section

General remarks. Compounds **3-10** are sensitive to air and moisture. Therefore, all manipulations were carried out in vacuo or under argon (nitrogen) using standard Schlenk technique or under nitrogen atmosphere in a glovebox. Toluene, diethyl ether, hexane and thf were dried over sodium/benzophenone and condensed under vacuum in the flasks just prior to use. The IR-spectra were recorded on a FSM-1201 spectrometer. The ESR spectra were recorded on Magnettech ESR5000 (9.48 GHz). The ESR signals of **3-10** were simulated using EasySpin (v. 5.2.28) software.¹ Compound **1** and **2** were prepared and isolated according to the literature procedure.² Elemental analysis was performed on a Vario EL Cube analyzer.

[(dpp-bian)Al(OC(H)N(Ph)C(NPh)O)₂] (3). To a solution of 1 (0.2 g, 0.37 mmol) in toluene (15 mL) PhNCO (0.17 g, 1.51 mmol) was added. The mixture was heated for 10 min at 80 °C. The resulting brown solution was concentrated and allowed to stand for 24 h at 25 °C. The yellow crystals of compound **3** (0.26 g, 63 %) were isolated. Anal. Calcd for C₇₁H₇₀AlN₆O₄ (1098.31): C, 77.64; H, 6.42; N, 7.65. Found: C, 77.60; H, 6.39; N, 7.63. ESR (toluene, 300 K): g = 2.0057, a_i (1 × ²⁷Al) = 0.488, a_i (2 × ¹⁴N) = 0.457, a_i (2 × ¹H) = 0.132, a_i (2 × ¹H) = 0.091 mT. IR (mineral oil) v/cm⁻¹: 1690 (s, C=N), 1650 (s, C=N), 1626 w, 1592 m, 1548 m, 1407 w, 1319 m, 1258 m, 1187 m, 1169 w, 1151 w, 1109 w, 1075 m, 1057 w, 1035 w, 1008 w, 993 m, 950 w, 926 m, 892 m, 872 m, 843 w, 826 m, 803 m, 763 s, 730 s, 694 s, 672 w, 652 m, 621 w, 596 w, 585 w, 551 s, 520 w, 507 m, 489 m, 456 w.

[(Ar^{BIG}-bian)Al(OC(H)N(Ph)C(NPh)O)₂] (4). To a solution of 2 (0.25 g, 0.20 mmol) in thf (15 mL) PhNCO (0.09 g, 0.80 mmol) was added. The mixture was heated for 10 min at 80 °C. The resulting brown solution was allowed to stand for 48 h at 25 °C. The brown crystals of compound **3** (0.24 g, 70 %) were isolated. Anal. Calcd for C₁₁₆H₁₀₂AlN₆O_{6.50} (1711.01): C, 81.05; H, 5.98; N, 4.89. Found: C, 81.03; H, 5.96; N, 4.88. ESR (2-MeTHF, 300 K): g = 2.0053, a_i (1 × ²⁷Al) = 0.484, a_i (2 × ¹⁴N) = 0.458, a_i (2 × ¹H) = 0.138, a_i (2 × ¹H) = 0.082 mT. IR (mineral oil) v/cm⁻¹: 1683 s, 1646 s, 1619 m, 1592 s, 1545 s, 1492 w, 1405 w, 1302 s, 1256 m, 1213 w, 1189 m, 1164 w, 1075 m, 1028 m, 1006 w, 988 s, 950 w, 921 m, 921 m, 870 m, 843 w, 814 w, 790 w, 759 s, 745 m, 730 m, 696 s, 654 w, 634 w, 605 m, 569 m, 551 s, 505 m, 465 w, 453 w.

[(Ar^{BIG}-bian)Al(OC(H)N(Cy)C(NCy)O)₂] (5). To a solution of 2 (0.3 g, 0.24 mmol) in thf (15 mL) CyNCO (0.12 g, 1.0 mmol) was added. The mixture was heated

for 10 min at 80 °C. The resulting brown solution was allowed to stand for 48 h at 25 °C. The yellow crystals of compound **5** (0.33 g, 65 %) were isolated. Anal. Calcd for $C_{135}H_{164}AIN_6O_{11.25}$ (2077.69): C, 78.19; H, 7.97; N, 4.05. Found: C, 78.14; H, 7.93; N, 4.05. ESR (2-MeTHF, 309 K): g = 2.0055, $a_i (1 \times {}^{27}AI) = 0.467$, $a_i (2 \times {}^{14}N) = 0.454$, $a_i (2 \times {}^{1}H) = 0.123$, $a_i (2 \times {}^{1}H) = 0.107$ mT. IR (mineral oil) v/cm⁻¹: 1686 s, 1652 m, 1608 s, 1649 s, 1492 w, 1357 m, 1310 w, 1288 m, 1268 m, 1249 w, 1213 w, 1192 m, 1157 m, 1120 s, 1070 s, 1032 m, 1002 w, 951 w, 913 s, 870 m, 854 w, 816 m, 791 w, 764 m, 745 m, 704 s, 664 m, 635 w, 697 m, 571 m, 555 w, 540 m, 521 m, 472 m.

[(Ar^{BIG}-bian)Al(OC(H)N(3,5-Cl₂Ph)C(N(3,5-Cl₂Ph))O)₂] (6). To a solution of 2 (0.25 g, 0.20 mmol) in thf (15 mL) 3,5-Cl₂-PhNCO (0.15 g, 0.83 mmol) was added. The mixture was heated for 10 min at 80 °C. After cooling to room temperature, THF was removed from the reaction mixture almost completely, and toluene was added to obtain a 1: 3 solvent mixture. The resulting red solution was allowed to stand for 48 h at 10 °C. The red crystals of compound **6** (0.26 g, 60 %) were isolated. Anal. Calcd for C₁₂₇H₉₈AlCl₈N₆O₄ (2082.69): C, 73.24; H, 4.74; N, 4.04. Found: C, 73.21; H, 4.70; N, 4.03. ESR (THF, 300 K): g = 2.0054, a_i (1 × ²⁷Al) = 0.497, a_i (2 × ¹⁴N) = 0.453, a_i (2 × ¹H) = 0.130, a_i (2 × ¹H) = 0.112 mT. IR (mineral oil) v/cm⁻¹: 1686 s, 1644 m, 1630 w, 1578 s, 1552 w, 1539 w, 1493 w, 1419 w, 1302 s, 1259 m, 1191 m, 1152 w, 1114 w, 1096 w, 1078 w, 1042 m, 991 w, 953 w, 906 s, 874 m, 842 w, 804 s, 767 s, 747 w, 731 w, 701 s, 681 w, 665 w, 634 w, 606 m, 568 m, 544 m, 513 w, 491 w, 463 w.

[(dpp-bian)Al(OC(H)N(tBu))₂] (7). To a solution of 1 (0.2 g, 0.37 mmol) in Et₂O (15 mL) the excess of *t*BuNCO (0.14 g, 1.41 mmol) was added. The mixture was heated for 10 min at 80 °C. The resulting yellow solution was concentrated and allowed to stand for 3 h at 25 °C. The crystals of free dpp-bian were isolated. The solution was concentrated again and allowed to stand for 24 h at 25 °C. The yellow crystals of compound **7** (polymorphic form **7b**) (0.08 g, 28 %) were isolated. Crystals of **7a** were obtained by recrystallization of **7b** in hexane. Anal. Calcd for C₄₆H₆₀AlN₄O₂ (727.96): C, 75.89; H, 8.31; N, 4.04. Found: C, 75.88; H, 8.29; N, 4.04. ESR (toluene, 313 K): *g* = 2.0055, *a*₁ (1 × ²⁷Al) = 0.462, *a*₁ (2 × ¹⁴N) = 0.451, *a*₁ (4 × ¹H) = 0.120 mT. IR (mineral oil) v/cm⁻¹: 1593 s, 1579 w, 1548 s, 1327 m, 1263 s, 1236 w, 1208 m, 1187 w, 1154 w, 1109 w, 1087 w, 1056 w, 1035 w, 1003 m, 945 m, 888 m, 871 m, 820 s, 804 m, 773 w, 763 s, 720 w, 699 w, 670 w, 640 m, 625 w, 597 m, 582 w, 558 m, 537 w, 508 s, 457 w.

[(Ar^{BIG} -bian)Al(OC(H)N(tBu))₂] (8). To a solution of 2 (0.25 g, 0.20 mmol) in thf (15 mL) the excess of *t*BuNCO (0.08 g, 0.82 mmol) was added. The mixture was heated for 10 min at 80 °C. The solution was allowed to stand for 24 h at 25 °C. The formed yellow micro-crystalline precipitate of compound 8 (0.14 g, 54 %) was isolated. Anal. Calcd for C₈₈H₈₀AlN₄O₂ (1252.62): C, 84.38; H, 6.44; N, 4.47. Found: C, 84.35; H, 6.42; N, 4.46. ESR (THF, 313 K): g = 2.0056, a_i (1 × ²⁷Al) = 0.452, a_i (2 × ¹⁴N) = 0.440, a_i (4 × ¹H) = 0.133 mT. IR (mineral oil) v/cm⁻¹: 1669 m, 1596 s, 1582 w, 1541 m, 1493 w, 1298 w, 1262 s, 1208 m, 1159 w, 1135 w, 1078 m, 1031 m, 1002 m, 946 w, 917 w, 870 m, 818 m, 766 m, 747 m, 702 s, 626 m, 605 s, 577 s, 544 m, 506 w, 458 s. X-ray quality crystals of compound 8 were obtained from toluene. The resulting crystals are cocrystallizates of compound 8 and a neutral Ar^{BIG}-bian ligand, which is probably caused by prolonged heating of the suspension of the complex in toluene, leading to its partial destruction.

[(dpp-bian)Al(N(Cy)₂CH)₂] (9). To a solution of 1 (0.2 g, 0.37 mmol) in toluene (15 mL) DCC (0.15 g, 0.75 mmol) was added. The mixture was heated for 10 min at 80 °C. The resulting brown micro-crystalline precipitate was recrystallized in thf, the solution was allowed to stand for 24 h at 25 °C. The brown crystals of compound 9 (0.23 g, 66 %) were isolated. Anal. Calcd for C₆₂H₈₆AlN₆ (942.34): C, 79.02; H, 9.20; N, 8.92. Found: C, 79.02; H, 9.19; N, 8.92. ESR (solid state, 300 K): g = 2.0058. IR (mineral oil) v/cm⁻¹: 1612 s, 1559 s, 1537 w, 1400 w, 1363 w, 1342 w, 1324 m, 1258 s, 1230 m, 1189 w, 1170 w, 1144 w, 1129 w, 1114 w, 1080 w, 1059 w, 1043 m, 1020 m, 955 m, 934 w, 900 w, 891 w, 867 m, 842 w, 820 m, 800 m, 764 s, 721 w, 704 w, 670 w, 657 w, 647 w, 595 w, 535 s, 485 s.

[(Ar^{BIG}-bian)Al(H)(N(Cy)₂CH)] (10). To a solution of 2 (0.25 g, 0.20 mmol) in thf (15 mL) the excess of DCC (0.08 g, 0.41 mmol) was added. The mixture was heated for 10 min at 80 °C. After replacement thf to toluene the resulting brown solution was allowed to stand for 24 h at 25 °C. The brown crystals of compound **10** (0.14 g, 55 %) were isolated. Anal. Calcd for C₉₁H₈₄AlN₄ (1260.68): C, 86.70; H, 6.72; N, 4.44. Found: C, 86.67; H, 6.68; N, 4.42. ESR (THF, 308 K): g = 2.0054, a_i (1 × ²⁷Al) = 0.479, a_i (2 × ¹⁴N) = 0.422, a_i (1 × ¹H) = 1.098, a_i (4 × ¹H) = 0.104 mT. IR (mineral oil) v/cm⁻¹: 1810 s, 1599 m, 1561 m, 1537 m, 1493 w, 1337 w, 1293 w, 1267 m, 1240 w, 1220 m, 1186 w, 1166 w, 1122 m, 1080 s, 1031 s, 1003 w, 990 w, 962 w, 915 w, 889 w, 873 m, 838 w, 814 m, 794 w, 765 s, 744 m, 700 s, 651 m, 629 w, 605 s, 568 m, 548 m, 520 w, 504 w, 480 w, 458 w.

Single crystal X-ray diffraction studies. The X-ray diffraction data for complexes **3-10** were collected on an Oxford Xcalibur Eos diffractometer (Mo-K_α radiation, ω-scan technique, $\lambda = 0.71073$ Å). Data collection, cell refinement, data reduction and absorption corrections were carried out using CrysAlisPro.³ Empirical absorption correction was done using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The all compounds were solved by dual method⁴ and were refined on F_{hkl}^2 using SHELXTL package⁵. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms except H(79), H(93) in complex **5**, H(79A), H(93A) in **8**, H(27) in **9** and H(1), H(2) atoms in **10**, were placed in calculated positions and were refined using a riding model (U_{iso}(H) = 1.5U_{eq}(C) for CH₃-groups and U_{iso}(H) = 1.2U_{eq}(C) for other groups). In turn, the other hydrogen atoms were located from difference Fourier maps and were refinement without additional restraints.

Two pseudopolymorphic forms of complex **7** were obtained by the recrystallization from different organic solvents: hexane (**7a**) and Et₂O (**7b**). The main geometric characteristics in complexes **7a** and **7b** are in excellent agreement with each other (Table 1S). In the main text of the article, when describing the geometry of complex **7**, we use the geometry of pseudopolymorph **7a**. Information about solvent molecules in the crystal, disorders, constraints and restraints used to refine the structure, as well as other crystallographic information for complexes **3-10** is given in the summary Table 2S.

The main crystallographic data and structure refinement details for complexes **3-10** are presented in Table 3S. CCDC 2364136-2364144 contain the supplementary crystallographic data for this paper. These data can also be obtained free of charge by The Cambridge Crystallographic Data Centre: <u>ccdc.cam.ac.uk/structures</u>

Bond	3	Bond	4
AI(1)–N(1)	1.9846(12)	AI(1)–N(1)	2.006(4)
AI(1)–N(2)	1.9918(13)	AI(1)–N(2)	1.999(4)
N(1)–C(1)	1.3294(19)	N(1)–C(1)	1.336(5)
N(2)–C(2)	1.3308(18)	N(2)–C(2)	1.326(5)
C(1)–C(2)	1.431(2)	C(1)–C(2)	1.427(6)
AI(1)–O(1)	1.8580(11)	AI(1)–O(1)	1.897(3)
AI(1)–O(2)	1.9347(11)	AI(1)–O(2)	1.882(3)
AI(1)–O(3)	1.8529(11)	AI(1)–O(3)	1.915(3)
AI(1)–O(4)	1.9315(11)	AI(1)–O(4)	1.866(3)
C(37)–O(1)	1.2802(18)	C(79)–O(1)	1.250(5)
C(37)–N(3)	1.2785(19)	C(79)–N(3)	1.335(5)
C(37)–N(4)	1.456(2)	C(86)–N(3)	1.444(6)
C(44)–N(4)	1.334(2)	C(86)–N(4)	1.281(6)
C(44)–O(2)	1.2440(19)	C(86)–O(2)	1.303(5)
C(51)–O(3)	1.2849(18)	C(93)–O(3)	1.266(5)
C(51)–N(5)	1.275(2)	C(93)–N(5)	1.317(6)
C(51)–N(6)	1.454(2)	C(100)–N(5)	1.464(6)
C(58)–N(6)	1.332(2)	C(100)–N(6)	1.273(6)
C(58)–O(4)	1.2484(18)	C(100)–O(4)	1.311(5)
Angle	3	Angle	4
O(1)-AI(1)-O(3)	94.01(5)	O(1)–AI(1)–O(3)	175.87(16)
N(2)-AI(1)-N(1)	83.36(5)	N(2)–Al(1)–N(1)	83.22(15)
O(2)-AI(1)-O(4)	169.91(5)	O(2)-AI(1)-O(4)	92.18(14)
O(1)-AI(1)-O(2)	86.41(5)	O(1)–AI(1)–O(2)	86.43(15)
O(3)–Al(1)–O(4)	86.63(5)	O(3)-AI(1)-O(4)	87.16(14)

Table 1S. Selected bond lengths [Å] and angles [°] for complexes 3-10.

Bond	5	Bond	6
AI(1)–N(1)	2.014(2)	AI(1)–N(1)	1.992(2)
AI(1)–N(2)	2.008(2)	N(1)–C(1)	1.336(3)
N(1)–C(1)	1.335(4)	C(1)–C(1)'	1.437(5)
N(2)–C(2)	1.332(3)	AI(1)–O(1)	1.9051(17)
C(1)–C(2)	1.443(4)	AI(1)–O(2)	1.8849(18)
AI(1)–O(1)	1.913(2)	C(41)–O(1)	1.246(3)
AI(1)–O(2)	1.846(2)	C(41)–N(2)	1.334(3)
AI(1)–O(3)	1.911(2)	C(48)–N(2)	1.454(3)
AI(1)–O(4)	1.844(2)	C(48)–N(3)	1.276(3)

C(79)–O(1)	1.256(3)	C(48)–O(2)	1.289(3)
C(79)–N(3)	1.325(3)		
C(86)–N(3)	1.464(3)		
C(86)–N(4)	1.267(4)		
C(86)–O(2)	1.298(3)		
C(93)–O(3)	1.259(3)		
C(93)–N(5)	1.322(4)		
C(100)–N(5)	1.461(3)		
C(100)–N(6)	1.275(4)		
C(100)–O(4)	1.295(3)		
Angle	5	Angle	6
O(1)-AI(1)-O(3)	174.62(9)	O(1)–Al(1)–O(1)'	175.78(12)
N(2)-AI(1)-N(1)	82.74(9)	N(1)–Al(1)–N(1)'	84.68(12)
O(2)-AI(1)-O(4)	94.60(9)	O(2)–Al(1)–O(2)'	90.32(11)
O(1)-AI(1)-O(2)	87.38(8)	O(1)–AI(1)–O(2)	86.35(8)
O(3)-AI(1)-O(4)	87.15(9)		
Bond	7a	Bond	7b
Bond Al(1)–N(1)	7a 1.9985(17)	Bond Al(1)–N(1)	7b 1.9992(15)
Bond Al(1)–N(1) Al(1)–N(2)	7a 1.9985(17) 1.9977(17)	Bond Al(1)–N(1) Al(1)–N(2)	7b 1.9992(15) 1.9914(15)
Bond AI(1)-N(1) AI(1)-N(2) N(1)-C(1)	7a 1.9985(17) 1.9977(17) 1.328(2)	Bond Al(1)–N(1) Al(1)–N(2) N(1)–C(1)	7b 1.9992(15) 1.9914(15) 1.328(2)
Bond Al(1)–N(1) Al(1)–N(2) N(1)–C(1) N(2)–C(2)	7a 1.9985(17) 1.9977(17) 1.328(2) 1.326(2)	Bond Al(1)–N(1) Al(1)–N(2) N(1)–C(1) N(2)–C(2)	7b 1.9992(15) 1.9914(15) 1.328(2) 1.328(2)
Bond Al(1)–N(1) Al(1)–N(2) N(1)–C(1) N(2)–C(2) C(1)–C(2)	7a 1.9985(17) 1.9977(17) 1.328(2) 1.326(2) 1.434(3)	Bond Al(1)–N(1) Al(1)–N(2) N(1)–C(1) N(2)–C(2) C(1)–C(2)	7b 1.9992(15) 1.9914(15) 1.328(2) 1.328(2) 1.433(2)
Bond AI(1)–N(1) AI(1)–N(2) N(1)–C(1) N(2)–C(2) C(1)–C(2) AI(1)–O(1)	7a 1.9985(17) 1.9977(17) 1.328(2) 1.326(2) 1.434(3) 1.9062(15)	Bond Al(1)–N(1) Al(1)–N(2) N(1)–C(1) N(2)–C(2) C(1)–C(2) Al(1)–O(1)	7b 1.9992(15) 1.9914(15) 1.328(2) 1.328(2) 1.433(2) 1.9023(14)
Bond AI(1)–N(1) AI(1)–N(2) N(1)–C(1) N(2)–C(2) C(1)–C(2) AI(1)–O(1) AI(1)–O(2)	7a 1.9985(17) 1.9977(17) 1.328(2) 1.326(2) 1.434(3) 1.9062(15) 1.9045(15)	Bond Al(1)–N(1) Al(1)–N(2) N(1)–C(1) N(2)–C(2) C(1)–C(2) Al(1)–O(1) Al(1)–O(2)	7b 1.9992(15) 1.9914(15) 1.328(2) 1.328(2) 1.433(2) 1.9023(14) 1.9017(14)
Bond AI(1)–N(1) AI(1)–N(2) N(1)–C(1) N(2)–C(2) C(1)–C(2) AI(1)–O(1) AI(1)–O(2) AI(1)–N(3)	7a 1.9985(17) 1.9977(17) 1.328(2) 1.326(2) 1.434(3) 1.9062(15) 1.9045(15) 2.069(2)	Bond Al(1)–N(1) Al(1)–N(2) N(1)–C(1) N(2)–C(2) C(1)–C(2) Al(1)–O(1) Al(1)–O(2) Al(1)–N(3)	7b 1.9992(15) 1.9914(15) 1.328(2) 1.328(2) 1.433(2) 1.9023(14) 1.9017(14) 2.0559(18)
Bond AI(1)–N(1) AI(1)–N(2) N(1)–C(1) N(2)–C(2) C(1)–C(2) AI(1)–O(1) AI(1)–O(2) AI(1)–N(3) AI(1)–N(4)	7a 1.9985(17) 1.9977(17) 1.328(2) 1.326(2) 1.434(3) 1.9062(15) 1.9045(15) 2.069(2) 2.073(2)	Bond AI(1)–N(1) AI(1)–N(2) N(1)–C(1) N(2)–C(2) C(1)–C(2) AI(1)–O(1) AI(1)–O(2) AI(1)–N(3) AI(1)–N(4)	7b 1.9992(15) 1.9914(15) 1.328(2) 1.328(2) 1.433(2) 1.9023(14) 1.9017(14) 2.0559(18) 2.0614(17)
Bond AI(1)-N(1) AI(1)-N(2) N(1)-C(1) N(2)-C(2) C(1)-C(2) AI(1)-O(1) AI(1)-O(2) AI(1)-N(3) AI(1)-N(4) O(1)-C(37)	7a 1.9985(17) 1.9977(17) 1.328(2) 1.326(2) 1.434(3) 1.9062(15) 1.9045(15) 2.069(2) 2.073(2) 1.297(3)	Bond Al(1)–N(1) Al(1)–N(2) N(1)–C(1) N(2)–C(2) C(1)–C(2) Al(1)–O(1) Al(1)–O(2) Al(1)–N(3) Al(1)–N(4) O(1)–C(37)	7b 1.9992(15) 1.9914(15) 1.328(2) 1.328(2) 1.433(2) 1.9023(14) 1.9017(14) 2.0559(18) 2.0614(17) 1.266(2)
Bond AI(1)-N(1) AI(1)-N(2) N(1)-C(1) N(2)-C(2) C(1)-C(2) AI(1)-O(1) AI(1)-O(2) AI(1)-N(3) AI(1)-N(4) O(1)-C(37) N(3)-C(37)	7a 1.9985(17) 1.9977(17) 1.328(2) 1.326(2) 1.434(3) 1.9062(15) 1.9045(15) 2.069(2) 2.073(2) 1.297(3) 1.286(3)	Bond AI(1)-N(1) AI(1)-N(2) N(1)-C(1) N(2)-C(2) C(1)-C(2) AI(1)-O(1) AI(1)-O(2) AI(1)-N(3) AI(1)-N(4) O(1)-C(37) N(3)-C(37)	7b 1.9992(15) 1.9914(15) 1.328(2) 1.328(2) 1.433(2) 1.9023(14) 1.9017(14) 2.0559(18) 2.0614(17) 1.266(2) 1.287(3)
Bond AI(1)-N(1) AI(1)-N(2) N(1)-C(1) N(2)-C(2) C(1)-C(2) AI(1)-O(1) AI(1)-O(2) AI(1)-N(3) AI(1)-N(4) O(1)-C(37) N(3)-C(37) O(2)-C(42)	7a 1.9985(17) 1.9977(17) 1.328(2) 1.326(2) 1.434(3) 1.9062(15) 1.9045(15) 2.069(2) 2.073(2) 1.297(3) 1.286(3) 1.317(3)	Bond AI(1)-N(1) AI(1)-N(2) N(1)-C(1) N(2)-C(2) C(1)-C(2) AI(1)-O(1) AI(1)-O(1) AI(1)-N(3) AI(1)-N(3) AI(1)-N(4) O(1)-C(37) N(3)-C(37) O(2)-C(42)	7b 1.9992(15) 1.9914(15) 1.328(2) 1.328(2) 1.433(2) 1.9023(14) 1.9017(14) 2.0559(18) 2.0614(17) 1.266(2) 1.287(3) 1.291(2)
Bond AI(1)-N(1) AI(1)-N(2) N(1)-C(1) N(2)-C(2) C(1)-C(2) AI(1)-O(1) AI(1)-O(2) AI(1)-N(3) AI(1)-N(4) O(1)-C(37) N(3)-C(37) O(2)-C(42) N(4)-C(42)	7a 1.9985(17) 1.9977(17) 1.328(2) 1.326(2) 1.434(3) 1.9062(15) 1.9045(15) 2.069(2) 2.073(2) 1.297(3) 1.286(3) 1.317(3) 1.286(3)	Bond AI(1)-N(1) AI(1)-N(2) N(1)-C(1) N(2)-C(2) C(1)-C(2) AI(1)-O(1) AI(1)-O(1) AI(1)-N(3) AI(1)-N(3) AI(1)-N(4) O(1)-C(37) N(3)-C(37) O(2)-C(42) N(4)-C(42)	7b 1.9992(15) 1.9914(15) 1.328(2) 1.328(2) 1.433(2) 1.9023(14) 1.9017(14) 2.0559(18) 2.0614(17) 1.266(2) 1.287(3) 1.291(2) 1.288(3)
Bond AI(1)-N(1) AI(1)-N(2) N(1)-C(1) N(2)-C(2) C(1)-C(2) AI(1)-O(1) AI(1)-O(1) AI(1)-N(3) AI(1)-N(4) O(1)-C(37) N(3)-C(37) O(2)-C(42) N(4)-C(42) Angle	7a 1.9985(17) 1.9977(17) 1.328(2) 1.326(2) 1.434(3) 1.9062(15) 1.9045(15) 2.069(2) 2.073(2) 1.297(3) 1.286(3) 1.317(3) 1.286(3) 7a	Bond Al(1)–N(1) Al(1)–N(2) N(1)–C(1) N(2)–C(2) C(1)–C(2) Al(1)–O(1) Al(1)–O(1) Al(1)–O(2) Al(1)–N(3) Al(1)–N(4) O(1)–C(37) N(3)–C(37) O(2)–C(42) N(4)–C(42) Angle	7b 1.9992(15) 1.9914(15) 1.328(2) 1.328(2) 1.433(2) 1.9023(14) 1.9017(14) 2.0559(18) 2.0614(17) 1.266(2) 1.287(3) 1.291(2) 1.288(3) 7b
Bond AI(1)-N(1) AI(1)-N(2) N(1)-C(1) N(2)-C(2) C(1)-C(2) AI(1)-O(1) AI(1)-O(1) AI(1)-N(3) AI(1)-N(3) AI(1)-N(4) O(1)-C(37) N(3)-C(37) O(2)-C(42) N(4)-C(42) Angle O(1)-AI(1)-O(2)	7a 1.9985(17) 1.9977(17) 1.328(2) 1.326(2) 1.326(2) 1.434(3) 1.9062(15) 1.9045(15) 2.069(2) 2.073(2) 1.286(3) 1.317(3) 1.286(3) 157.97(7)	Bond $AI(1)-N(1)$ $AI(1)-N(2)$ $N(1)-C(1)$ $N(2)-C(2)$ $C(1)-C(2)$ $AI(1)-O(1)$ $AI(1)-O(2)$ $AI(1)-N(3)$ $AI(1)-N(4)$ $O(1)-C(37)$ $N(3)-C(37)$ $O(2)-C(42)$ $N(4)-C(42)$ Angle $O(1)-AI(1)-O(2)$	7b 1.9992(15) 1.9914(15) 1.328(2) 1.328(2) 1.328(2) 1.433(2) 1.9023(14) 1.9017(14) 2.0559(18) 2.0614(17) 1.287(3) 1.291(2) 1.288(3) 7b 158.90(6)
Bond AI(1)-N(1) AI(1)-N(2) N(1)-C(1) N(2)-C(2) C(1)-C(2) AI(1)-O(1) AI(1)-O(2) AI(1)-N(3) AI(1)-N(3) AI(1)-N(4) O(1)-C(37) N(3)-C(37) O(2)-C(42) N(4)-C(42) Angle O(1)-AI(1)-O(2) N(1)-AI(1)-N(2)	7a1.9985(17)1.9977(17)1.328(2)1.326(2)1.326(2)1.434(3)1.9062(15)1.9045(15)2.069(2)2.073(2)1.297(3)1.286(3)1.317(3)1.286(3)7a157.97(7)82.74(7)	Bond $AI(1)-N(1)$ $AI(1)-N(2)$ $N(1)-C(1)$ $N(2)-C(2)$ $C(1)-C(2)$ $AI(1)-O(1)$ $AI(1)-O(2)$ $AI(1)-N(3)$ $AI(1)-N(4)$ $O(1)-C(37)$ $N(3)-C(37)$ $O(2)-C(42)$ $N(4)-C(42)$ Angle $O(1)-AI(1)-O(2)$ $N(1)-AI(1)-N(2)$	7b 1.9992(15) 1.9914(15) 1.328(2) 1.328(2) 1.433(2) 1.9023(14) 1.9017(14) 2.0559(18) 2.0614(17) 1.266(2) 1.287(3) 1.291(2) 1.288(3) 7b 158.90(6) 83.08(6)

_

Bond	8	Bond	9
AI(1)–N(1)	1.991(2)	AI(1)–N(1)	1.9979(13)
AI(1)–N(2)	2.008(2)	AI(1)–N(2)	1.9877(14)

N(1)–C(1)	1.335(3)	AI(1)–N(3)	1.8760(18)	
N(2)–C(2)	1.340(3)	N(1)–C(1)	1.3335(18)	
C(1)–C(2)	1.435(3)	C(1)–C(1)'	1.436(3)	
AI(1)–O(1)	1.8838(17)	N(2)-C(20)	1.3122(17)	
AI(1)–O(2)	1.9029(17)	N(3)–C(27)	1.377(3)	
AI(1)–N(3)	2.078(2)	N(4)–C(27)	1.279(3)	
AI(1)–N(4)	2.063(2)			
O(1)–C(79)	1.301(3)			
N(3)–C(79)	1.294(3)			
O(2)–C(84)	1.307(3)			
N(4)–C(84)	1.286(3)			
N(5)-C(89)	1.292(12)			
N(6)-C(90)	1.286(12)			
C(89)-C(90)	1.463(7)			
Angle	8	Angle	9	
O(1)-AI(1)-O(2)	160.04(8)	N(1)–Al(1)–N(1)'	82.79(7)	
N(1)-AI(1)-N(2)	83.34(8)	N(2)–Al(1)–N(2)'	66.90(8)	
N(3)-Al(1)-N(4)	90.54(8)	N(2)-C(20)-N(2)'	113.2(2)	

Bond	10
AI(1)–N(1)	2.0405(18)
AI(1)–N(2)	1.9348(18)
N(1)–C(1)	1.340(3)
N(2)–C(2)	1.331(3)
C(1)–C(2)	1.435(3)
AI(1)–H(1)	1.53(3)
AI(1)–N(3)	1.9313(19)
AI(1)–N(4)	2.0533(19)
C(79)–N(3)	1.339(3)
C(79)–N(4)	1.303(3)
Angle	10
N(2)–Al(1)–N(1)	83.01(7)
N(3)–Al(1)–N(4)	66.88(8)
N(4)-C(79)-N(3)	112.6(2)

Table 2S. Solvent molecules and disorders in the crystal, constraints and restraints used torefine the structure, as well as other crystallographic information for complexes 3-10

	Solvent		Constraints	
	(per one		and	
Complex	molecule of	Disorders	restraints	Comments
	the		used in the	
	complex)	The and substituent at the	rennement	
		N(1) atom and the Ph at the	EADP.	
		N(5) atom are disordered	SADI, DFIX,	
3	a toluene	over two positions, while the	FLAT,	-
	molecule	solvate toluene molecule is	ISOR,	
		disordered over three	≪AFIX 66»	
		positions		For every two molecules of
		Two Ph substituents (at the	EADP,	the complex in crystal there
4	2.5 IHF	N(3) and N(5) atoms) and all	SADI, DEIX,	are five THF molecules, one
	molecules	disordered over two positions		of which is disordered near
			«/ (i i/(00//	a special position
		Une cyclohexyl (at the N(4)		
		Ar ^{BIG} -bian ligand) substituents	EADP,	
E	8 THF molecules	THF are disordered over two	SADI, DFIX, ISOR, «AFIX 66», SAME	
Э		positions. In addition, each of		_
		the eight solvent molecules		
		are also disordered over two		
		Two Ph substituents in the		
		Ar ^{BIG} -bian ligand and two	FADP	
C	three toluene molecules	hree toluene molecules are	SADI, DFIX,	One of the toluene
0		while the third toluene	ISOR,	noiecules is disordered
		molecule is disordered over	«AFIX 66»	
		four positions		
		The -CHN(<i>t</i> Bu) fragments of	EADP,	7a is pseudopolymorphic
7a	_	both forimidate ligands are	SADI, DFIX,	without any solvents in the
		disordered at two positions	ISOR	crystal packing
				7b is pseudopolymorphic
	half a	The -CHN(<i>t</i> Bu) fragments of	EADD	torm of the complex 7a with
7b	diethyl	disordered at two positions	SADI DEIX	the crystal packing. The
	ether	The diethyl ether molecule is	ISOR	diethyl ether molecule is
	molecule	disordered over four positions		disordered near a special
				position
	one and a	The uncoordinated Ar ^{BIG} -hian	EADP,	I ne crystal is a cocrystal of
	half	molecule and all toluene	SADI, DFIX,	Ar ^{BIG} -bian ligand. For every
8	molecules	molecules in the crystal are	FLAT, ISOR, «AFIX 66»	two molecules of complex 8
	of toluene	of toluene disordered over two position		in the crystal, there is one
				Ar ^{BIG} -bian molecule and

				three toluene molecules, disordered near a special position.
9	_	one isopropyl group and one cyclohexyl substituent (at the N(2) atom) are disordered over two positions	EADP, SADI, ISOR	_
10	_	the hydride hydrogen atom is disordered with the chlorine atom with an approximate ratio of 0.91:0.09	_	Thus, the crystal studied is actually a cocrystal of complex 10 and complex [(Ar ^{BIG} - bian)Al(Cl)((NCy) ₂ CH)]. The presence of chlorine atoms in compound 10 is probably due to its presence in the starting hydride 2 , the synthesis of which is a reaction of (Ar ^{BIG} - bian)Na with H ₂ AlCl. ²

	3*(C7H8)	4*2.5THF	5*8THF	6*3(C7H8)
Empirical Formula	$C_{71}H_{70}AlN_6O_4$	$C_{116}H_{102}AlN_6O_{6.50}$	$C_{138}H_{170}AlN_6O_{12}$	$C_{127}H_{98}AlCl_8N_6O_4$
М	1098.31	1711.01	2131.77	2082.69
T/K	150(2)	100(2)	100(2)	100(2)
Crystal System	monoclinic	monoclinic	triclinic	triclinic
Space Group	$P2_{l}/c$	$P2_l/n$	P-1	C2/c
a/Å	10.68620(10)	13.9292(10)	17.4461(3)	15.5264(5)
b/Å	24.2190(3)	35.073(3)	18.1446(3)	32.4861(9)
c/Å	24.0009(3)	18.3381(13)	22.2454(4)	20.5560(7)
α/deg	90	90	77.716(2)	90
ß/deg	101.2880(10)	93.597(6)	67.268(2)	92.086(3)
γ⁄deg	90	90	67.259(2)	90
V/Å ³	6091.49(12)	8941.1(11)	5973.3(2)	10361.4(6)
Z	4	4	2	4
$d_{calc}/g \ cm^{-3}$	1.198	1.271	1.185	1.335
µ/mm ⁻¹	0.088	0.087	0.081	0.287
F(000)	2332	3620	2298	4332
Crystal Size/mm	0.46×0.43×0.21	0.58×0.08×0.07	0.53×0.33×0.29	0.56×0.23×0.10
θ range/deg	1.924–26.373	1.875-25.027	1.924–27.103	2.294–27.102
	$-13 \le h \le 13$	$-16 \le h \le 16$	$-22 \leq h \leq 22$	$-19 \leq h \leq 19$
h, k, l	$-30 \le k \le 30$	$-34 \le k \le 41$	$-23 \le k \le 23$	$-41 \le k \le 41$
	$-29 \leq l \leq 29$	$-21 \le l \le 21$	$-28 \le l \le 28$	$-26 \leq l \leq 26$
Reflections	101640 / 12447	48777 / 15800	93829 / 26347	65053 / 11433
Collect. / unique	101010/1211/	10777715000	930 <u>2</u> 9720317	05055711155
R _{int}	0.0410	0.1383	0.0954	0.0793
Data/Restr./Param.	12447 / 376 / 774	15800 / 321 / 1215	26347 / 824 / 1610	11433 / 251 / 688
$S(F^2)$	1.029	1.028	1.028	1.010
$R_1 / wR_2 (I > 2\sigma(I))$	0.0430 / 0.1011	0.0812 / 0.1404	0.0742 / 0.1772	0.0539 / 0.1168
R_1 / wR_2 (all data)	0.0633 / 0.1124	0.1988 / 0.1851	0.1488 / 0.2208	0.1028 / 0.1391
Larg. Diff. Peak and Hole/ e Å ⁻³	0.349 / -0.338	0.319 / -0.324	0.712 / -0.531	0.468 / -0.657

Table 4S. Crystal data and structure refinement details for compounds 7-10.

	7a	7b*0.5(Et ₂ O)	2(8)*(Ar ^{BIG} - bian)*3(C ₇ H ₈)	9	$\begin{array}{c} 0.91(10)*\\ 0.09(C_{91}H_{83}AlClN_4) \end{array}$
Empirical Formula	$C_{46}H_{60}AlN_4O_2$	$C_{48}H_{65}AlN_4O_{2.50}$	$C_{275}H_{244}Al_2N_{10}O_4$	$C_{62}H_{86}AlN_6$	$C_{91}H_{83.91}AlCl_{0.09}N_4$
М	727.96	765.02	3806.75	942.34	1263.78
T/K	100(2)	100(2)	100(2)	100(2)	100(2)
Crystal System	triclinic	monoclinic	triclinic	orthorhombic	monoclinic
Space Group	P-1	<i>I2/a</i>	P-1	Pnma	$P2_{l}/n$
a/Å	10.1372(2)	19.8354(4)	12.8415(2)	17.0207(7)	13.4157(3)
b/Å	10.9091(3)	10.1426(2)	13.0763(2)	20.0834(8)	19.8661(4)
c/Å	22.0327(6)	44.3154(8)	35.5128(6)	15.5972(7)	26.8279(6)
α/deg	90.294(2)	90	94.674(2)	90	90
β/deg	101.579(2)	97.485(2)	91.642(2)	90	103.845(2)
γ/deg	116.479(2)	90	118.087(2)	90	90
V/Å ³	2124.08(10)	8839.5(3)	5228.26(17)	5331.6(4)	6942.3(3)
Z	2	8	1	4	4
$d_{calc}/g \text{ cm}^{-3}$	1.138	1.150	1.209	1.174	1.209
µ/mm ⁻¹	0.088	0.089	0.078	0.084	0.085
<i>F</i> (000)	786	3312	2022	2052	2690
Crystal Size/mm	0.46×0.36×0.19	0.47×0.35×0.27	0.35×0.22×0.05	0.40×0.31×0.22	0.27×0.21×0.18
θ range/deg	2.207-30.034	2.061-30.508	2.065-26.020	2.028-30.507	1.869–25.027
	$-14 \leq h \leq 14$	$-28 \le h \le 28$	$-15 \le h \le 15$	$-24 \leq h \leq 24$	$-15 \le h \le 15$
h, k, l	$-15 \leq k \leq 15$	$-14 \leq k \leq 14$	$-16 \le k \le 16$	$-28 \leq k \leq 22$	$-23 \leq k \leq 23$
	$-31 \le 1 \le 31$	$-63 \le 1 \le 62$	$-43 \le l \le 43$	$-22 \leq l \leq 22$	$-31 \le 1 \le 31$
Reflections Collect. / unique	40367 / 12438	87011 / 13497	219031 / 20573	64257 / 8351	75318 / 12252
R _{int}	0.0679	0.0762	0.0808	0.1010	0.0569
Data/Restr./Param.	12438 / 186 / 537	13497 / 254 / 604	20573 / 593 / 1631	8351 / 0 / 338	12252 / 0 / 885
$S(F^2)$	1.037	1.012	1.100	1.021	1.039
$\mathbf{R}_{1} / w \mathbf{R}_{2} (\mathbf{I} > 2\sigma(\mathbf{I}))$	0.0666 / 0.1319	0.0598 / 0.1240	0.0629 / 0.1299	0.0579 / 0.1388	0.0491 / 0.1030
$\mathbf{R}_1 / w \mathbf{R}_2$ (all data)	0.1280 / 0.1566	0.1168 / 0.1481	0.1002 / 0.1460	0.0921 / 0.1628	0.0814 / 0.1165
Larg. Diff. Peak and Hole/ e Å ⁻³	0.388 / -0.376	0.429 / -0.386	0.796 / -0.367	0.436 / -0.510	0.272 / -0.399

Complex	JPPY-6	TPR-6	OC-6	PPY-6	HP-6	
3	29.860	12.523	0.564	26.008	31.913	
4	29.520	13.305	0.434	26.113	31.677	
5	29.790	12.654	0.480	26.469	31.681	
6	29.311	13.168	0.498	25.940	31.195	
7 (7a)	28.585	12.189	2.978	24.389	27.178	
7 (7b)	28.015	11.827	3.250	23.602	27.662	
8	28.287	12.090	3.131	23.881	27.535	
	JPPY-6	3: Johnson pe	ntagonal pyra	amid J2		
		TPR-6: Trio	gonal prism			
		OC-6: Oc	tahedron			
	PPY-6: Pentagonal pyramid					
		HP-6: H	exagon ⁶			

Table 5S. SHAPE analysis for complexes 3-8.

Figure S1. ESR spectrum of compound **3** (toluene, 300 K): (a) experimental; (b) simulated, g = 2.0057, $a_i (1 \times {}^{27}\text{AI}) = 0.488$, $a_i (2 \times {}^{14}\text{N}) = 0.457$, $a_i (2 \times {}^{1}\text{H}) = 0.132$, $a_i (2 \times {}^{1}\text{H}) = 0.091$ mT.

Figure S2. ESR spectrum of compound **4** (2-MeTHF, 300 K): (a) experimental; (b) simulated, g = 2.0053, $a_i (1 \times {}^{27}\text{AI}) = 0.484$, $a_i (2 \times {}^{14}\text{N}) = 0.458$, $a_i (2 \times {}^{1}\text{H}) = 0.138$, $a_i (2 \times {}^{1}\text{H}) = 0.082$ mT.

Figure S3. ESR spectrum of compound 5 (2-MeTHF, 309 K): (a) experimental; (b) simulated, g = 2.0055, $a_i (1 \times {}^{27}\text{Al}) = 0.467$, $a_i (2 \times {}^{14}\text{N}) = 0.454$, $a_i (2 \times {}^{1}\text{H}) = 0.123$, $a_i (2 \times {}^{1}\text{H}) = 0.107$ mT.

Figure S4. ESR spectrum of compound **6** (THF, 300 K): (a) experimental; (b) simulated, g = 2.0054, $a_i (1 \times {}^{27}\text{Al}) = 0.497$, $a_i (2 \times {}^{14}\text{N}) = 0.453$, $a_i (2 \times {}^{1}\text{H}) = 0.130$, $a_i (2 \times {}^{1}\text{H}) = 0.112$ mT.

Figure S5. ESR spectrum of compound 7 (toluene, 313 K): (a) experimental; (b) simulated, g = 2.0055, $a_i (1 \times {}^{27}\text{AI}) = 0.462$, $a_i (2 \times {}^{14}\text{N}) = 0.451$, $a_i (4 \times {}^{1}\text{H}) = 0.120$ mT.

Figure S6. ESR spectrum of compound 8 (THF, 313 K): (a) experimental; (b) simulated, g = 2.0056, $a_i (1 \times {}^{27}\text{AI}) = 0.452$, $a_i (2 \times {}^{14}\text{N}) = 0.440$, $a_i (4 \times {}^{1}\text{H}) = 0.133$ mT.

Figure S7. ESR spectrum of compound **9** in the solid state (300 K), g = 2.0058.

Figure S8. ESR spectrum of compound **10** (THF, 308 K): (a) experimental; (b) simulated, *g* = 2.0054, *a*_i (1 × ²⁷Al) = 0.479, *a*_i (2 × ¹⁴N) = 0.422, *a*_i (1 × ¹H) = 1.098, *a*_i (4 × ¹H) = 0.104 mT.

Figure S9. Molecular structure of 4. Thermal ellipsoids at 30 % probability.

Figure S10. Molecular structure of 5. Thermal ellipsoids at 30 % probability.

Figure S11. Molecular structure of **6**. Thermal ellipsoids at 30 % probability. Symmetry transformations used to generate equivalent atoms (atom'): -x+1, y, -z+1/2.

Figure S12. Molecular structure of 8: Thermal ellipsoids at 30 % probability.

Figure S13. Molecular structure of 10: Thermal ellipsoids at 30 % probability.

1. S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42–55.

2. T. S. Koptseva, M. V. Moskalev, A. A. Skatova, R. V. Rumyantcev and I. L. Fedushkin, *Inorg. Chem.*, 2022, 61, 206–213.

3. Rigaku Oxford Diffraction. (2024). CrysAlisPro software system, Rigaku Corporation, Wroclaw, Poland.

4. G.M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3.

5. G.M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3.

6. S. Alvarez, D. Avnir, M. Llunell, M. Pinsky, Continuous symmetry maps and shape classification. The case of six-coordinated metal compounds, *New J. Chem.*, 2002, 26, 996.