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1. Materials

Reagents Methylisothiocynate (TCI Chemicals), 3-Methyl-2-aminopyridine (Avra
Chemicals, India), Palladium dichloride (Sigma-Aldrich), KCI (Rankem Chemicals)
were procured from commercial sources and used without purification. The
experiments were conducted under ambient conditions. The solvents used were
purchased from Merck and were purified before use as per the standard procedure.

2. Physical measurements

Infrared Spectra were recorded in the 400-4000 cm ™! region as KBr pellets on a
PerkinElmer Spectrum two. 'H and '3C NMR spectra were noted in DMSO-Dg on a
JEOL INM-ECZ500R/S1 FT-NMR spectrometer using TMS as an internal reference.
Electronic spectra were recorded at 10> M solution in DMSO on a SHIMADZU 1700
UV-Vis spectrophotometer. Electrospray lonization Mass Spectrometric (ESI-MS)
measurements have been attained from SCI-EX X500R QTOF high resolution mass
spectrometer.

3. Crystal structure determination

The crystal data was gathered using a graphite mono-chromated Cu/Mo
Ka(A=1.54841/0.71073A) radiation source at 293K on an Oxford Gemini
diffractometer using CryAlis CCD software. The structures were solved using by Direct
methods (SHELXL-18) through a multiscan absorption correction, and full-matrix least
squares on F?> were utilized to refine the results against all data using anisotropic
displacement parameters for all atoms apart from hydrogen in Olex 2.0.!-3 All hydrogen
atoms were included in the refinement at a geometrically ideal position and refined with
a riding model. The MERCURY package for Windows program were used for
generating structures.*

4. Solution Stability

Assessing the stability of complexes in water is crucial for determining the biological
effectiveness of any metallodrug. A stock solution of 1073 M of each complex was
prepared in DMSO (to improve solubility). The sample solutions were prepared to 10-
M by taking 30 pL of stock diluting with 2970 uL of phosphate-buffered saline (PBS)
and then the stability of complexes (107> M) was carried out. The absorption spectra of
the complexes were measured with increasing time Oh, 2h, 4h, 6h, 12h, 18h, 24h and

48h at room temperature.’
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Further, stability is investigated with 'H NMR. '"H NMR spectra of complexes
is recorded over a period of 72 hrs in the presence of water.
5. Evaluation of anticancer activity
Cell Culture and maintenance
The Human colon cancer (HT-29), Breast cancer (MCF-7) and normal human
embryonic kidney (HEK-293) cell lines were procured from the NCCS, Pune, India and
were maintained in the cell culture flask containing Dulbecco Modified Eagle Medium
(DMEM) with L-glutamine which was supplemented with penicillin, streptomycin and
10% FBS. Cells were maintained in a humidified atmosphere containing 5% CO?2 at
37° C. The cells were harvested when they reached 80-90% confluence and plated for
subsequent experiments.
Assessment of cytotoxicity by MTT Assay
Evaluation of cytotoxicity was assessed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5
diphenyltetrazolium bromide dye) assay in HT-29 and MCF-7 cells. Breifly 1x10*
cells/well of HT-29, MCF-7 and HEK-293 cell lines were seeded in 96 well flat bottom
plates supplemented with DMEM medium (10% FBS and antibiotic solution) and
incubated to adhere overnight under humidified CO, incubator. After incubation period
media was discarded and cells were then treated for 24 h with different concentrations
of ligand, palladium complex and cisplatin, used as a positive control. Following
incubation, drug containing media was removed and then 100 L MTT (5 mg/mL in
PBS) was added to each well and incubated for additional 2 h to allow formazan crystal
formation. Formed crystals were dissolved in 100 pL DMSO and absorbance was
measured at 595 nm using an ELISA plate reader (Bio-Rad, CA, USA).¢ Cell viability

was calculated relative to the untreated control group using the following equation:

R [Absorbance in the treated group]
% Cell Viability = - x 100
[Absorbance in the untreated group]

Acridine orange/propidium iodide (AO/EB) dual staining

The morphological changes in HT-29 cells after treatment with [Pd(M3MPyThU)CI],
was identified qualitatively using AO/EtBr staining. For this study briefly 1x10°
cells/well in 6 well culture plate were treated with varying concentrations (5, 10 and 20
uM) of [Pd(M3MPyThU)CI], for a duration of 24 h at a temperature of 37 °C and a
CO, level of 5%. The cells were washed after treatment and fixed with 4%
paraformaldehyde solution for 8-10 min and subsequently permeabilized by 0.1%

TritonX100 followed by staining with 20 uM of AO/EtBr solution and incubated for
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15 min in dark. Finally, cells were then observed by fluorescent microscope
(Nikkon E 800, Japan) at 40X magnification’.

Estimation for intracellular ROS generation

The ability of [PA(M3MPyThU)CI], to induce reactive oxygen species (ROS)
production in HT-29 cancer cells was assessed using confocal microscopy. The levels
of oxidative stress and reactive oxygen species (ROS) in cancer cells are significantly
elevated compared to normal cells, primarily because of aberrant metabolism. To
investigate the likely cause of apoptotic induction, the redox state was evaluated using
DCFH-DA dye following the established protocol®. This is because intracellular ROS
can play a significant role in the induction of apoptosis. HT-29 cells were placed in 6
well tissue culture plates and exposed to several concentrations (5, 10, and 20 uM) of
[PA(M3MPyThU)CI],. Following the incubation period, the cells were rinsed two
times with PBS and then treated with a 20 uM solution of DCFH-DA dye at a
temperature of 37 °C for a duration of 30 min. The fluorescent intensity of stained cells
was visualized under a confocal microscope (LSM-780, ZEISS) at 20X magnification
for qualitative assessment.

Measurement of mitochondrial membrane potential (A¥Ym) by Rh-123

To evaluate the impact of [Pd(M3MPyThU)CIl], on mitochondrial-dependent
apoptosis, we assessed mitochondrial membrane potential (A¥Ym) using Rh-123
staining. Rh-123 is a fluorescent dye that accumulates in mitochondria in a potential-
dependent manner. A decrease in Rh-123 fluorescence intensity indicates mitochondrial
depolarization, a hallmark of apoptosis®. Briefly, HT-29 cells (1 x 10° cells/well) were
seeded in 96-well plates and treated with [Pd(M3MPyThU)CI], at various
concentrations (5, 10, and 20 uM) for 24 h under standard culture conditions (37 °C,
5% CO,). Following incubation, cells were washed with PBS, stained with Rh-123 for
30 min at room temperature, and then analyzed for fluorescence intensity using confocal

microscopy (LSM-780, ZEISS) at 20X magnification.

Statistical analysis

A comparison between the groups was conducted using either an unpaired student's t-
test or a two-way ANOVA, followed by Bonferroni posttests. The experiment was
conducted in triplicate and the data was reported as the average value plus or minus
the standard deviation (SD). Differences were considered significant for p-value <

0.05. *<0.05, **<0.01 and ***<0.001.
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6. L.R. Spectra of ligand and complexes
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7. NMR spectra of ligand and complexes
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Supporting Fig. S4: 'TH NMR spectrum of HM3MPyThU in CDCl;
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Supporting Fig. S5: 3C NMR spectrum of HM3MPyThU in CDCl;
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Supporting Fig. S6: '"H NMR spectrum of [PA(M3MPyThU),] in DMSO-d;
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Supporting Fig. S7: 3C NMR spectrum of [PA(M3MPyThU),] in DMSO-ds
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Supporting Fig. S8: 'H NMR spectrum of [Pd(M3MPyThU)CI], in CDCl;
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Supporting Fig. S9: 3C NMR spectrum of [Pd(M3MPyThU)CI], in CDCl;
8. HRMS figures
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Supporting Fig. S10: HRMS spectrum of HM3MPyThU
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Supporting Fig. S11: HRMS spectrum of [Pd(M3MPyThU),|
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Supporting Fig. S12: HRMS spectrum of [Pd(M3MPyThU)Cl],
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9. Crystallographic tables and figures
Supporting Table 1: Selected interatomic distances and angles for HM3MPyThU

Bond length (A) Bond angle (°)
S()-C(7) 1.687(4) C(7)-NQ2)-C(6) 130.74)
N2)-C(7) 1.377(5) C(6)-N(1)-C(1) 117.6(3)
N(2)-C(6) 1.393(5) C(7)-N(3)-C(8) 123.5(4)
N(1)-C(6) 1.327(5) C(3)-C(4)-C(6) 116.5(3)
N(1)-C(1) 1.341(5) C(3)-C(4)-C(5) 121.8(3)
N@3)-C(7) 1.317(6) N(1)-C(6)-N(2) 118.13)
N@3)-C(8) 1.459(5) N(1)-C(6)-C(4) 123.1(4)
C(4)-C(3) 1.375(5) N(2)-C(6)-C(4) 118.7(3)
C(4)-C(6) 1.412(5) NG)-C(7)-NQ) 117.1(4)
C(4)-C(5) 1.506(5) N(3)-C(7)-S(1) 124.5(3)
C(3)-CQ2) 1.382(6) N(2)-C(7)-S(1) 118.3(3)
C(1)-CQ2) 1.359(6) N(1)-C(1)-C(2) 124.1(4)

Supporting Table 2: Inter and intramolecular interactions [A and °] for HM3MPyThU

D-HA dD-H) d(H—--A) dD—--A) <(DHA)
N3)-H(3)-N(1) 0.86 1.97  2.660(5) 136.6
C(2)-HQA)--S(1)#1  0.93 301 3.695(4) 131.7

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z

Supporting Table 3: Selected interatomic distances and angles for [PA(M3MPyThU),]|
Bond length (A) Bond angle (°)
Pd(1)-N(4) 2.064(7) N(4)-Pd(1)-N(1) 93.9(2)
Pd(1)-N(1) 2.077(6) N()-Pd(1)-S(1)  90.22(17)
Pd(1)-S(1) 2.2610(18) N(4)-Pd(1)-S(2)  88.78(18)
Pd(1)-S(2) 2.2642(17) S(1)-Pd(1)-S(2) 87.61(6)
S(1)-C(7) 1.759(7) C(7)-S(1)-Pd(1) 102.3(3)
S(2)-C(15) 1.771(8) C(15)-S(2)-Pd(1) 99.4(2)
N(5)-C(15) 1.305(10) C(15)-N(5)-C(14)  124.8(6)
N(2)-C(6) 1.370(10) C(1)-N(1)-Pd(1) 115.8(5)
N(2)-C(7) 1.304(11) C(6)-N(1)-Pd(1) 125.5(5)
N(2)-C(6) 1.371(9) N(5)-C(15)-N(6) 117.8(7)
N(1)-C(1) 1.350(9) N(5)-C(15)-S(2) 128.6(6)
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N(1)-C(6)
C(15)-N(6)

1.366(9)
1.337(10)

N(6)-C(15)-S(2)
C(11)-C(12)-C(14)

113.6(6)
119.0(6)

D-H-A d(D-H) d(HA) d(D-A) <(DHA)
N(3)-H(3)-"N(2)#1 0.86 2.41 3.012(11) 1273
C(1)-H(1)-"N(4) 0.93 2.70 3.157(9) 111.3
C(8)-H(8A)-S(1)#2 0.96 2.88 3.668(9) 140.3
C(8)-H(8C)-N(2)#1 0.96 2.70 3.293(13) 120.6
N(6)-H(6)--S(2)#3 0.86 2.65 3.444(7) 154.5

Symmetry transformations used to generate equivalent atoms:

#1 -x,y-1/2, -z+2  #2 -x,y+1/2,-z+2 #3 -x,y-1/2, -z+1

Bond length (A) Bond angle (°)
PA2)-N@)  2.0623)  N@)-Pd(2)-SQ) 90.29(8)
PA2)-S2)  227108) N(4)-Pd(2)-S(1) 173.69(3)
PA(2)-S(1)  230038)  S(2)-Pd(2)-S(1) 83.46(3)
PA2)-CI2)  2337509) N(4)-Pd(2)-CI(2) 94.14(3)
PA()-N(1)  2.0633) S@)}PdQR)-CI2)  175.2803)
Pd(1)-S(1)  2.2771(8)  S(1)-Pd(2)-CI(2) 92.14(3)
PA(1)-SQ2)  232238)  N(1)-Pd(1)-S(1) 88.08(9)
PA(1)-CI(1)  2.3316(10)  N(1)-Pd(1)-S(2) 170.12(9)

S()-C(T)  1.8094)  S(1)-Pd(1)-S(2) 82.83(3)
S@2)-C(15)  1.804(4)  N(1)-Pd(1)-CI(1) 92.24(9)
N@)-C(14)  1358(5) S()-PA(1)-CI1)  176.83(4)
N@)-CO) 13615  S@)-Pd(1)-CI(1) 97.05(3)
N()-C()  13535)  C(D-SA)-Pd(l)  92.51(11)
N()-C(6)  13555) C(-S()-Pd2)  108.47(11)
NG)-C(15)  1.292(5)  Pd(1)-S(1)-Pd(2) 94.08(3)
NG)-C(14)  13705) C35)-SQ)-Pd2)  97.85(12)
NQ)-C(T) 12845 CU5)-S@2)-Pd(1)  111.07(12)
NQ)-C(6) 13785 Pd(2)-S(2)-Pd(1) 93.65(3)
N6)-C(15)  1331(5)  C(14)-N(4)-C(9) 119.2(3)

Supporting Table 4: Inter and intramolecular interactions [A and °] for [Pd(M3MPyThU),]

Supporting Table 5: Selected interatomic distances and angles for [PA(M3MPyThU)CI],
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N(6)-C(16)  1.452(5) C(14)-N(4)-Pd(2) 122.8(2)
N@3)-C(7) 1.328(5)  C(9)-N(4)-Pd(2) 117.9(3)
N(3)-C(8) 1.448(5)  C(1)-N(1)-C(6) 119.8(3)

Supporting Table 6: Inter and intramolecular interactions [A and °] for [Pd(M3MPyThU)ClI],

D-H-A d(D-H) d(H+A) d(D-A) <(DHA)
N(6)-H(6)--Cl(1) 0.86 2.32 3.162(3) 166.8
N(@3)-H3)-CI(2) 0.86 2.43 3.221(3) 153.2
C(1)-H(1)--Cl(1) 0.93 2.80 3.279(4) 113.1

C(9)-H(9)--S(1)#1 0.93 2.93 3.414(4) 113.6
C(9)-H(9)--Cl(2) 0.93 2.77 3.281(4) 115.8
C(10)-H(10)--CI(2)#2 0.93 2.96 3.716(4) 139.5

Symmetry transformations used to generate equivalent atoms:
#1 -x+1,-y+1,-z+1  #2 -x+2,-y+1,-z+1

(b)

s1 "__‘_..-"

Supporting Fig. S13: Showing intramolecular (a) N-H-N and (b) intramolecular N-H--S
and intermolecular C-H---S hydrogen bonding interactions in HM3MPyThU leading to

flower-like architectures.

Supporting Fig. S14: Showing intermolecular C-H---w interactions in HM3MPyThU
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Supporting Fig. S15: Showing intermolecular C-H--S hydrogen bonding interactions in
[Pd(M3MPyThU),].

Supporting Fig. S16: Showing intermolecular C-H-*N and N-H---N hydrogen bonding
interactions in [PA(M3MPyThU),|.

Supporting Fig. S17: Showing inter and intra molecular C-H---Cl hydrogen bonding
interactions in [PA(M3MPyThU)Cl],
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Supporting Fig. S18: Showing intermolecular C-H-S hydrogen bonding interactions in
[Pd(M3MPyThU)CI],

Supporting Fig. S19: Showing C-H:-1 (2.909 A) hydrogen bonding interactions in
[PA(M3MPyThU)CI],
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10. Solution stability figure
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Supporting Fig. S20: Showing the UV-Vis spectra of compounds (10 uM) (a) in DMSO (b)
in 1% DMSO/PBS (pH 7.4) and depicting the solution stability of complexes in 1%
DMSO/PBS (pH 7.4) (c) [PA(M3MPyThU)], (d) [Pd(M3MPyThU)CI],
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Supporting Fig. S21: Depicting the stability of [PdA(M3MPyThU),| through 'H NMR
spectra recorded over a period of 72 Hr (3:Blue 0 hr, 2:Green 24 Hr, 1:Red 72Hrs ) in
the presence of excess water peak around d 3.33 ppm in dmso-Dg peak at 8 2.50 ppm. Peaks
around 2.25 and 2.82 ppm are due to two methyl groups, the proton in the aromatic region (&

6.75-7,75 ppm) is due to the pyridine ring. No Significant changes has been observed in 'H

NMR spectra in the presence of water.

Al L i — J\__ .

13.5 12.5 11.5 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5
f1 (ppm)

Supporting Fig. S22: Depicting the stability of [PdA(M3MPyThU)CIl], through 'H NMR
spectra recorded over a period of 72 Hr (3: Blue 0 hr, 2: Green 24 Hr, 1: Red 72Hr) in
the presence of excess water peak around 6 1.56 ppm in CDCIl; peak at & 7.26 ppm. Peak
around 2.25 and 3.06 ppm are due to two methyl groups, proton is aromatic region are due to
pyridine ring (8 6.75-8.50 ppm). No Significant changes has been observed in 'H NMR

spectra in presence of water.
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11. Structure of complexes used in comparison
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Supporting Fig. 23: Structures of previously reported complexes used in comparison

study.!0-13
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