Supporting Information

A new S = 1/2 stacked kagomé lattice compound showing two

successive ferromagnetic transitions

Tianyu Zhu^{a,b}, Zhiying Zhao^a, Meiyan Cui^a, Wenhao Zhang^{a,b} and Zhangzhen He^{*,a}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of

Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

*E-mail: hezz@fjirsm.ac.cn

Fig. S1. The energy-dispersive spectrometry elemental analyses of Na₆V₇(SeO₃)₈O₆F₆. Fig. S2. The heat capacity (C_p) measured under 0 T, where the solid red line represents the simulated lattice contribution ($C_{L_{1,0}}$)

Table S1. The bond lengths (Å) of $Na_6V_7(SeO_3)_8O_6F_6$.

Table S2. The bond angles (°) of $Na_6V_7(SeO_3)_8O_6F_6$.

Table S3. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² × 10³) for Na₆V₇(SeO₃)₈O₆F₆.

Table S4. Anisotropic displacement parameters ($Å^2 \times 10^3$) for Na₆V₇(SeO₃)₈O₆F₆.

Fig. S1. The energy-dispersive spectrometry (EDS) elemental analyses of $Na_6V_7(SeO_3)_8O_6F_6$.

Fig. S2. The heat capacity (C_p) measured under 0 T, where the solid red line represents the simulated lattice contribution ($C_{L)}$.

Bond	Dist.	Bond	Dist.
Na1-O1	2.363(11)	V2-F1 ¹	1.973(15)
Na1-O2 ⁶	2.424(13)	V2-F1 ¹²	1.7821(15)
Na1-O2 ⁹	2.775(12)	V2-F1 ¹³	1.7821(15)
Na1-O39	2.446(12)	V2-F1 ¹⁰	1.973(15)
Na1-F1	2.067(16)	V2-F1	1.7821(14)
Na1-F1 ⁵	2.537(16)	V2-F1 ⁵	1.973(15)
V1-O1 ⁵	1.997(10)	Se1-O5 ³	1.696(10)
V1-O2 ⁶	2.097(11)	Se1-O5 ⁴	1.696(10)
V1-O3	1.979(9)	Se1-O5	1.696(10)
V1-O4	1.734(10)	Se2-O1	1.729(10)
V1-O4 ⁷	1.957(10)	Se2-O2	1.702(10)
V1-O5	1.971(10)	Se2-O3	1.713(8)

Table S1. The bond lengths (Å) of $Na_6V_7(SeO_3)_8O_6F_6$.

Symmetry transformations used to generate equivalent atoms:

 ${}^{1}_{+Y,1-X+Y,-1/2+Z;}{}^{2}_{+X,+Y,-1+Z;}{}^{3}_{1-Y,1+X-Y,+Z;}{}^{4}_{+Y-X,1-X,+Z;}{}^{5}_{1-Y+X,+X,-1/2+Z;}{}^{6}_{1-Y+X,+X,1/2+Z;}{}^{7}_{1-X,2-Y,1/2+Z;}{}^{8}_{+Y,1-X,1-X,+Z;}{}^{4}_{+Y,1-X,+X,+Z}{}^{1}_{+Y-X,2-X,+Z;}{}^{1}_{2-Y,1+X-Y,+Z}{}^{1}_{+Y,1-X,2-X,+Z;}{}^{1}_{+Y,1-X,+Z;}{}^{1}_{+Y,1-X,+Z;}{}^{1}_{+Y,1-X,+Z;}{}^{1}_{+Y,1-X,+Z;}{}^{1}_{+Y,1-X,+Z;}{}^{1}_{+Y,1-X,+Z;}{}^{1$

Table S2 The bond angles (°) of $Na_6V_7(SeO_3)_8O_6F_6$.

Angle	(°)	Angle	(°)
O2-Se2-O3	97.3(4)	F1 ¹¹ -V2-F1 ⁵	173.8(5)
O2-Se2-O1	101.0(5)	F1 ¹⁰ -V2-F1 ¹¹	82.7(7)
O3-Se2-O1	99.6(4)	F1 ¹⁰ -V2-F1 ¹²	101.9(4)
O5-Se1-O5 ³	100.7(4)	F1 ¹⁰ -V2-F1 ²	173.8(5)
O5 ⁴ -Se1-O5 ³	100.7(4)	F1-V2-F1 ¹²	173.8(5)
O5 ⁴ -Se1-O5	100.7(4)	F1-V2-F1 ⁵	101.9(4)
O5-V1-O2 ⁶	85.2(4)	F1-V2-F111	82.7(7)
O5-V1-O3	167.2(4)	F1 ¹² -V2-F1 ⁵	73.25(8)
O5-V1-O1 ⁵	93.7(4)	F1 ¹² -V2-F1 ²	73.25(8)
O3-V1-O2 ⁶	82.1(4)	F1 ¹¹ -V2-F1 ²	101.9(4)
O3-V1-O1 ⁵	85.6(4)	F1 ¹⁰ -V2-F1 ⁵	101.9(4)
O4-V1-O5	93.1(4)	F1 ² -V2-F1 ⁵	73.25(8)
O4 ⁷ -V1-O5	85.5(4)	F1-V2-F1 ²	101.9(4)
O4-V1-O2 ⁶	177.7(4)	F1 ¹¹ -V2-F1 ¹²	101.9(4)
O4 ⁷ -V1-O2 ⁶	87.5(4)	F1-V2-F110	82.7(7)
O4-V1-O3	99.6(4)	Se1-O5-V1	124.2(6)

O4 ⁷ -V1-O3	93.1(4)	Se2-O2-V1 ²	122.8(5)
O4-V1-O4 ⁷	93.90(14)	Se2-O2-Na1 ²	111.7(5)
O47-V1-O15	170.8(4)	Se2-O2-Na11	93.2(4)
O4-V1-O1 ⁵	95.3(4)	V1 ² -O2-Na1 ¹	96.6(4)
O1 ⁵ -V1-O2 ⁶	83.3(4)	V1 ² -O2-Na1 ²	122.5(5)
O2 ⁶ -Na1-O2 ⁸	146.4(5)	Na1 ² -O2-Na1 ¹	97.5(5)
O2 ⁶ -Na1-O3 ⁸	101.2(4)	Se2-O3-V1	129.3(5)
O2 ⁶ -Na1-F1 ⁵	72.8(4)	Se2-O3-Na11	105.3(4)
O3 ⁸ -Na1-O2 ⁸	58.4(3)	V1-O3-Na11	113.0(4)
O3 ⁸ -Na1-F1 ⁵	151.2(5)	V1-O4-V1 ¹⁴	155.7(5)
F1 ⁵ -Na1-O2 ⁸	138.2(4)	Na1-F1-Na1 ⁹	116.2(5)
F1-Na1-O2 ⁶	137.4(5)	V2-F1-Na1	99.6(6)
F1-Na1-O2 ⁸	73.3(4)	V213-F1-Na1	142.6(7)
F1-Na1-O3 ⁸	89.8(5)	V2 ¹³ -F1-Na1 ⁹	80.5(4)
F1-Na1-F1 ⁵	77.9(4)	V2-F1-Na19	135.5(7)
F1-Na1-O1	115.9(5)	V2-F1-V2 ¹³	86.8(5)
O1-Na1-O2 ⁶	101.4(4)	Se2-O1-V19	124.2(5)
O1-Na1-O2 ⁸	63.4(3)	Se2-O1-Na1	121.6(5)
O1-Na1-O3 ⁸	103.7(4)	V19-O1-Na1	114.2(5)
O1-Na1-F1 ⁵	105.1(5)		

Symmetry transformations used to generate equivalent atoms:

 ${}^{1}+X,+Y,-1+Z;^{2}+Y,1-X+Y,-1/2+Z;^{3}+Y-X,1-X,+Z;^{4}1-Y,1+X-Y,+Z;^{5}1-Y+X,+X,-1/2+Z;^{6}1-Y+X,+X,1/2+Z;^{7}1-X,2-Y,1/2+Z;^{8}+X,+Y,1+Z;^{9}+Y,1-X+Y,1/2+Z;^{10}2-Y,1+X-Y,+Z;^{11}1+Y-X,2-X,+Z;^{12}2-X,2-Y,-1/2+Z;^{13}2-X,2-Y,1/2+Z;^{14}1-X,2-Y,-1/2+Z;^{14}1-X,$

Table S3 Atomic coordinates (x 10⁴) and equivalent isotropic displacement parametersU(eq) (Å² x 10³) for Na₆V₇(SeO₃)₈O₆F₆.

Atom	X	У	Z	U(eq)
Nal	8076(6)	10604(5)	8040(20)	25.5(16)
V1	5539.7(16)	9409.9(17)	2660(15)	6.3(4)
V2	10000	10000	7780(20)	35(2)
Se1	3333.33	6666.67	2358(14)	4.7(5)
Se2	7803.4(9)	12240.0(9)	2718(12)	2.9(3)
O1	8399(8)	12334(8)	5770(20)	6.3(18)
O2	9049(9)	12727(9)	840(20)	9(2)
O3	7205(7)	10736(7)	2150(20)	3.7(19)
O4	4861(8)	9647(8)	0(20)	6.8(19)

05	4030(8)	8019(9)	3860(20)	8(2)
F1	9542(11)	10750(10)	10007(19)	70(6)

Table S4. Anisotropic displacement parameters (Å² x 10³) for Na₆V₇(SeO₃)₈O₆F₆.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Nal	43(4)	8(3)	9(4)	2(3)	-2(3)	1(3)
V1	4.1(9)	4.6(9)	9.8(10)	2.4(12)	3.0(12)	2.0(7)
V2	36(3)	36(3)	35(6)	0	0	17.8(16)
Se1	5.1(6)	5.1(6)	3.8(13)	0	0	2.6(3)
Se2	2.9(5)	2.5(5)	3.1(6)	-0.2(7)	0.6(7)	1.3(4)
01	7(2)	6(2)	6(2)	0.3(13)	-0.6(13)	3.1(15)
02	9(2)	9(2)	8(2)	-0.4(13)	0.7(13)	4.4(15)
03	4(2)	3(2)	4(2)	0.1(13)	0.3(13)	1.8(15)
O4	6(2)	7(2)	7(2)	0.0(13)	0.4(13)	3.2(15)
05	7(5)	5(4)	11(5)	1(4)	-1(4)	2(4)
F1	27(6)	26(6)	162(19)	28(9)	11(9)	18(5)