Supplementary material

Modular synthesis of triphenylphosphine-derived cage ligands for rhodium-catalyzed hydroformylation applications

Wenlong Wang^a*‡, Cunyao Li^b‡, Wenhao Wang^c‡, Yuqin Qiu^a, Hongguang Liu^{cd}*,

Jinlong Lu^a, Yizhou Zhan ^a, Li Yan^b, and Yunjie Ding^{b*}

^aSchool of Materials Science and Engineering, Dongguan University of Technology,

Dongguan 523808, China

^bDalian National Laboratory for Clean Energy, and State Key Laboratory of catalysis,

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

°College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China

^dSchool of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China

*Email: wangwl@dgut.edu.cn (W.W); hongguang_liu@jnu.edu.cn (H. L); <u>dyj@dicp.ac.cn</u> (Y. D)

Table of Contents

1.	General remarks	3
2.	Synthesis and characterizations of L1-derived SBUs	3
3.	Synthesis and characterizations of L2-derived SBUs	8
4.	Synthesis and characterizations of L3-derived SBUs	13
5.	Synthesis of L4-derived SBUs	17
6.	X-ray single crystallography	.22
7.	NMR and ESI-HRMS characterizations of cage-L1	26
8.	NMR and ESI-HRMS characterizations of cage-L2	.29
9.	NMR and ESI-HRMS characterizations of cage-L3	.32
10	. NMR and ESI-HRMS characterizations of cage-L4	35
11	.Gas Chromatography Spectra of catalytic hydroformylations	.38
12	. References	40

1. General remarks

All quantum mechanical calculations were conducted by employing DFT with the Gaussian 09 package¹. Molecular structures were optimized using the B3LYP functional². The 6-31G(*d*,*p*) basis set was used for all elements except for Rh or Ni, for which the LANL2DZ basis set was employed with an extra *f*-polarization function $(\xi_f = 1.350 \text{ for Rh}, \xi_f = 3.130 \text{ for Ni})$. Vibrational frequency calculations at the same level were performed to verify that each stationary point was a minimum (no imaginary frequency) or a transition state (only one imaginary frequency). The SMD solvent model³ was utilized, and toluene was chosen as the solvent. Intrinsic reaction coordinate calculations were performed at a higher theoretical level, M06-L⁴, with the def2-TZVP basis set for Rh, and the 6-311+G(d,p) basis set for all the other atoms to determine the free energies for use at the B3LYP-optimized geometries. Empirical D3 dispersion corrections⁵ were included in the single-point calculations.

2. Synthesis of L1-derived SBUs

Synthesis of aldehyde acetal. 4-bromo-3-methylbenzaldehyde (5.53 g, 25 mmol) and triethyl orthoformate (4.89 g, 33 mmol) were dissolved in 50 mL of anhydrous ethanol, and then a drop of concentrated sulphuric acid was added as a catalyst. The mixture was magnetically stirred and refluxed for 8 h. After the completion of the

reaction, the mixture was cooled to room temperature and 30 mL of NaHCO₃ solution (0.5 M) was added, then the mixture was transferred to the separation funnel. The aqueous phase was extracted with ethyl acetate (3 × 100 mL), the combined organic extract was washed with saturated brine (3 × 100 mL), dried over anhydrous magnesium sulfate (MgSO₄, 50 g) and concentrated to afford aldehyde acetal product as a clear oil (6.49 g, 95% yield). ¹H NMR (CDCl₃): δ 1.21 (t, 6 H, *J* = 8.0 Hz), 2.34 (s, 3 H), 3.46-3.60 (m, 4 H), 5.50 (s, 1 H), 7.30 (d, 2 H, 8.0 Hz), 7.44 (d, 2 H, 8.0 Hz). ¹³C NMR (CDCl₃): δ 15.2, 23.0, 61.1, 101.0, 124.8, 125.7, 129.1, 132.1, 137.7, 138.4.

Synthesis of Grignard reagent. An oven-dried 100 mL three-necked, roundbottomed flask was loaded with magnesium powder (0.58 g, 24 mmol) and a crystal of iodine. Anhydrous THF (20 mL) was charged into this flask under an atmosphere of nitrogen. The synthesized aldehyde acetal product (5.46 g, 20 mmol) was dissolved in 30 mL of anhydrous THF, 10 mL of this solvent was directly charged to the Schlenk flask under an atomsphere of nitrogen. The flask was connected with a condenser-west tube and the mixture was magnetically stirred and heated to 60 °C, the Grignard reaction could be easily initiated. Then, this flask was equipped with a 50 mL dropping funnel filled with the before mentioned aldehyde acetal in THF solution (the remaining 20 mL), the solution was added dropwise within 10-15 min under an atomsphere of nitrogen. After the completion of the addition, the mixture was further refluxed for 2 h to afford the fresh Grignard reagent.

Synthesis of the final L1-derived SBUs. The above-prepared fresh Grignard reagent was cooled to -5 °C using an ice-salt bath. Then, PCl₃ (0.916 g, 6.67 mmol) was diluted with 10 mL anhydrous THF, the diluted PCl₃ solution was added to the Grignard reagent via a dropping funnel under an atomosphere of nitrogen, the reaction temperature was kept below 0 °C. After the completion of the addition process, the mixture was heated to 60 °C and stirred for another 2 h. After the reaction, the mixture was cooled to 0 °C using an ice bath, 10 mL of saturated NH₄Cl solution was added dropwise to quench the reaction mixture, after the addition of saturated NH₄Cl solution, the mixture was stirred overnight at room temperature. Then the solution was transferred to a separation funnel, after shaking, the solution was separated into

4

two layers, the organic phase was collected. The water phase was extracted with ethyl acetate (15 mL × 3), the combined organic phase was further washed with saturated aqueous NaCl solution (100 mL × 2), dried over anhydrous MgSO₄, filtered through fluted filter paper in a glass funnel, and concentrated on a rotary evaporator to afford crude product of yellow powder. The crude product was further purified through column chromatography with an eluent of hexane/EtOAc = 4/1 to afford the pure product as a light yellow powder (1.42 g, 55% yield). ¹H NMR (CDCl₃): δ 2.46 (s, 9 H), 6.85-6.88 (q, 3 H, *J* = 4.0 Hz), 7.59 (d, 3 H, *J* = 8.0 Hz), 7.78 (d, 3 H, *J* = 4.0 Hz), 10.01 (s, 3 H). ¹³C NMR (CDCl₃): δ 21.1, 127.6, 130.9, 133.5, 137.0, 140.8, 144.0, 192.0. ³¹P NMR (CDCl₃): δ -25.9. HRMS *m/z* (ESI) calcd for C₂₄H₂₂O₃P [M+H]⁺ 389.1307, found 389.1280.

¹H, ¹³C, ³¹P NMR spectra of synthetic intermediates

3. Synthesis of L2-derived SBUs and Cage-L2

Synthesis of aldehyde acetal. 4-bromo-2-methylbenzaldehyde (5.53 g, 25 mmol) and triethyl orthoformate (4.89 g, 33 mmol) were dissolved in 50 mL of anhydrous ethanol, and then a drop of concentrated sulphuric acid was added as a catalyst. The mixture was magnetically stirred and refluxed for 8 h. After the completion of the reaction, the mixture was cooled to room temperature and 30 mL of NaHCO₃ solution

(0.5 M) was added, then the mixture was transferred to the separation funnel. The aqueous phase was extracted with ethyl acetate (3 × 100 mL), the combined organic extract was washed with saturated brine (3 × 100 mL), dried over anhydrous magnesium sulfate (MgSO₄, 50 g) and concentrated to afford aldehyde acetal product as a clear oil (6.56 g, 96% yield). ¹H NMR (CDCl₃): δ 1.22 (t, 6 H, *J* = 8.0 Hz), 2.35 (s, 3 H), 3.47-3.61 (m, 4 H), 5.50 (s, 1 H), 7.32 (d, 2 H, 8.0 Hz), 7.44 (d, 2 H, 8.0 Hz). ¹³C NMR (CDCl₃): δ 15.2, 22.9, 60.9, 100.8, 124.7, 125.7, 129.1, 132.0, 137.5, 138.5.

Synthesis of Grignard reagent. An oven-dried 100 mL three-necked, roundbottomed flask was loaded with magnesium powder (0.58 g, 24 mmol) and a crystal of iodine. Anhydrous THF (20 mL) was charged into this flask under an atmosphere of nitrogen. The synthesized aldehyde acetal product (5.46 g, 20 mmol) was dissolved in 30 mL of anhydrous THF, 10 mL of this solvent was directly charged to the Schlenk flask under an atomsphere of nitrogen. The flask was connected with a condenser-west tube and the mixture was magnetically stirred and heated to 60 °C, the Grignard reaction could be easily initiated. Then, this flask was equipped with a 50 mL dropping funnel filled with the before mentioned aldehyde acetal in THF solution (the remaining 20 mL), the solution was added dropwise within 10-15 min under an atomsphere of nitrogen. After the completion of the addition, the mixture was further refluxed for 2 h to afford the fresh Grignard reagent.

Synthesis of the final L2-derived SBUs. The above-prepared fresh Grignard reagent was cooled to -5 °C using an ice-salt bath. Then, PCl₃ (0.916 g, 6.67 mmol) was diluted with 10 mL anhydrous THF, the diluted PCl₃ solution was added to the Grignard reagent via a dropping funnel under an atomosphere of nitrogen, the reaction temperature was kept below 0 °C. After the completion of the addition process, the mixture was heated to 60 °C and stirred for another 2 h. After the reaction, the mixture was cooled to 0 °C using an ice bath, 10 mL of saturated NH₄Cl solution was added dropwise to quench the reaction mixture, after the addition of saturated NH₄Cl solution, the mixture was stirred overnight at room temperature. Then the solution was transferred to a separation funnel, after shaking, the solution was extracted with ethyl

acetate (15 mL × 3), the combined organic phase was further washed with saturated aqueous NaCl solution (100 mL × 2), dried over anhydrous MgSO₄, filtered through fluted filter paper in a glass funnel, and concentrated on a rotary evaporator to afford crude product of yellow powder. The crude product was further purified through column chromatography with an eluent of hexane/EtOAc = 4/1 to afford the pure product as a light yellow powder (1.5 g, 58% yield). ¹H NMR (CDCl₃): δ 2.64 (s, 9 H), 7.22-7.25 (q, 6 H, *J* = 4.0 Hz), 7.78 (d, 3 H, *J* = 8.0 Hz), 10.29 (s, 3 H). ¹³C NMR (CDCl₃): δ 19.6, 131.6, 134.6, 135.4, 136.9, 140.6, 142.4, 192.2. ³¹P NMR (CDCl₃): δ –4.35. HRMS *m/z* (ESI) calcd for C₂₄H₂₂O₃P [M+H]⁺ 389.1307, found 389.1306. Note: the two peaks at 131.28 and 131.84 ppm are both split from the same carbon.

¹H, ¹³C, ³¹P NMR spectra of synthetic intermediates

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

4. Synthesis of L3-derived SBUs

Synthesis of aldehyde acetal. 4-bromo-2-fluorobenzaldehyde (5.08 g, 25 mmol) and triethyl orthoformate (4.89 g, 33 mmol) were dissolved in 50 mL of anhydrous ethanol, and then a drop of concentrated sulphuric acid was added as a catalyst. The mixture was magnetically stirred and refluxed for 8 h. After the completion of the reaction, the mixture was cooled to room temperature and 30 mL of NaHCO₃ solution (0.5 M) was added, then the mixture was transferred to the separation funnel. The aqueous phase was extracted with ethyl acetate (3 × 100 mL), the combined organic extract was washed with saturated brine (3 × 100 mL), dried over anhydrous magnesium sulfate (MgSO₄, 50 g) and concentrated to afford aldehyde acetal product as a yellow oil (6.65 g, 96% yield). ¹H NMR (CDCl₃): δ 1.23 (t, 6 H, *J* = 8.0 Hz), 3.51-3.59 (m, 2 H), 3.61-3.69 (m, 2 H), 5.66 (s, 1 H), 7.22 (d, 1 H, *J* = 8.0 Hz), 7.29 (d, 1 H, *J* = 8.0 Hz), 7.48 (t, 1 H, *J* = 8.0 Hz). ¹³C NMR (CDCl₃): δ 15.1, 61.9, 96.2, 118.8, 122.4, 125.8, 127.1, 129.3, 160.1. Note: the two peaks at 115.50 and 115.69 ppm are both split from the same carbon; The four peaks at 159.85, 159.91, 161.55 and 161.61 ppm are all split from the same carbon (C-F).

Synthesis of Grignard reagent. An oven-dried 100 mL three-necked, roundbottomed flask was loaded with magnesium powder (0.58 g, 24 mmol) and a crystal of iodine. Anhydrous THF (20 mL) was charged into this flask under an atmosphere of nitrogen. The synthesized aldehyde acetal product (5.54 g, 20 mmol) was dissolved in 30 mL of anhydrous THF, 10 mL of this solvent was directly charged to the Schlenk flask under an atomsphere of nitrogen. The flask was connected with a condenser-west tube and the mixture was magnetically stirred and heated to 60 °C, the Grignard reaction could be easily initiated. Then, this flask was equipped with a 50 mL dropping funnel filled with the before mentioned aldehyde acetal in THF solution (the remaining 20 mL), the solution was added dropwise within 10-15 min under an atomsphere of nitrogen. After the completion of the addition, the mixture was further refluxed for 2 h to afford the fresh Grignard reagent.

Synthesis of the final L3-derived SBUs. The above-prepared fresh Grignard reagent was cooled to -5 °C using an ice-salt bath. Then, PCl₃ (0.916 g, 6.67 mmol) was diluted with 10 mL anhydrous THF, the diluted PCl₃ solution was added to the Grignard reagent via a dropping funnel under an atomosphere of nitrogen, the reaction temperature was kept below 0 °C. After the completion of the additon process, the mixture was heated to 60 °C and stirred for another 2 h. After the reaction, the mixture was cooled to 0 °C using an ice bath, 10 mL of saturated NH₄Cl solution was added dropwise to quench the reaction mixture, after the addition of saturated NH₄Cl solution, the mixture was stirred overnight at room temperature. Then the solution was transferred to a separation funnel, after shaking, the solution was separated into two layers, the organic phase was collected. The water phase was extracted with ethyl acetate (15 mL \times 3), the combined organic phase was further washed with saturated aqueous NaCl solution (100 mL \times 2), dried over anhydrous MgSO₄, filtered through fluted filter paper in a glass funnel, and concentrated on a rotary evaporator to afford crude product of yellow powder. The crude product was further purified through column chromatography with an eluent of hexane/EtOAc = 4/1 to afford the pure product as a light yellow powder (1.36 g, 51% yield). ¹H NMR (CDCl₃): 7.08 (t, 3 H, *J* = 8.0 Hz), 7.21-7.27 (m, 3 H, *J* = 8.0 Hz), 7.92 (t, 3 H, *J* = 8.0 Hz), 10.38 (s, 3 H). ¹³C NMR (CDCl₃): δ 121.3, 124.9, 129.6, 144.5, 163.0, 165.6, 186.3. ³¹P NMR (CDCl₃): δ –2.90. HRMS *m/z* (ESI) calcd for C₂₁H₁₃F₃O₃P [M+H]⁺ 401.0554, found 401.0524.

¹H, ¹³C, ³¹P NMR spectra of synthetic intermediates

15

5. Synthesis of L4-derived SBUs

Synthesis of aldehyde acetal. 4-bromo-2,6-difluorobenzaldehyde (5.53 g, 25 mmol) and triethyl orthoformate (4.89 g, 33 mmol) were dissolved in 50 mL of anhydrous ethanol, and then a drop of concentrated sulphuric acid was added as a catalyst. The mixture was magnetically stirred and refluxed for 8 h. After the completion of the reaction, the mixture was cooled to room temperature and 30 mL of NaHCO₃ solution 17

(0.5 M) was added, then the mixture was transferred to the separation funnel. The aqueous phase was extracted with ethyl acetate (3 × 100 mL), the combined organic extract was washed with saturated brine (3 × 100 mL), dried over anhydrous magnesium sulfate (MgSO₄, 50 g) and concentrated to afford aldehyde acetal product as a yellow oil (7.01 g, 95% yield). ¹H NMR (CDCl₃): δ 1.26 (t, 6 H, *J* = 8.0 Hz, 4.0 Hz), 3.56-3.63 (m, 2 H), 3.75-3.83 (m, 2 H), 5.7 (s, 1 H), 6.82 (t, 2 H, *J* = 8.0 Hz). ¹³C NMR (CDCl₃): δ 14.9, 63.2, 96.5, 115.0, 115.5, 115.7, 122.0, 159.9, 161.6.

Synthesis of Grignard reagent. An oven-dried 100 mL three-necked, roundbottomed flask was loaded with magnesium powder (0.58 g, 24 mmol) and a crystal of iodine. Anhydrous THF (20 mL) was charged into this flask under an atmosphere of nitrogen. The synthesized aldehyde acetal product (5.90 g, 20 mmol) was dissolved in 30 mL of anhydrous THF, 10 mL of this solvent was directly charged to the Schlenk flask under an atomsphere of nitrogen. The flask was connected with a condenser-west tube and the mixture was magnetically stirred and heated to 60 °C, the Grignard reaction could be easily initiated. Then, this flask was equipped with a 50 mL dropping funnel filled with the before mentioned aldehyde acetal in THF solution (the remaining 20 mL), the solution was added dropwise within 10-15 min under an atomsphere of nitrogen. After the completion of the addition, the mixture was further refluxed for 2 h to afford the fresh Grignard reagent.

Synthesis of the final L4-derived SBUs. The above-prepared fresh Grignard reagent was cooled to -5 °C using an ice-salt bath. Then, PCl₃ (0.916 g, 6.67 mmol) was diluted with 10 mL anhydrous THF, the diluted PCl₃ solution was added to the Grignard reagent via a dropping funnel under an atomosphere of nitrogen, the reaction temperature was kept below 0 °C. After the completion of the addition process, the mixture was heated to 60 °C and stirred for another 2 h. After the reaction, the mixture was cooled to 0 °C using an ice bath, 10 mL of saturated NH₄Cl solution was added dropwise to quench the reaction mixture, after the addition of saturated NH₄Cl solution, the mixture was stirred overnight at room temperature. Then the solution was transferred to a separation funnel, after shaking, the solution was extracted with ethyl

18

acetate (15 mL × 3), the combined organic phase was further washed with saturated aqueous NaCl solution (100 mL × 2), dried over anhydrous MgSO₄, filtered through fluted filter paper in a glass funnel, and concentrated on a rotary evaporator to afford crude product of yellow powder. The crude product was further purified through column chromatography with an eluent of hexane/EtOAc = 3/1 to afford the pure product as a light yellow powder (1.61 g, 53% yield). ¹H NMR (CDCl₃): 6.94 (t, 6 H, J = 8.0 Hz), 10.36 (s, 3 H). ¹³C NMR (CDCl₃): δ 115.2, 117.2, 143.4, 163.0, 183.5. ³¹P NMR (CDCl₃): δ -0.26. HRMS *m/z* (ESI) calcd for C₂₁H₁₀F₆O₃P [M+H]⁺ 455.0272, found 455.0242. Note: due to the presence of F atoms, the splitting of C appears unusually active, and the eight peaks ranging from 161.59 to 164.41 ppm are all split from the same carbon.

¹H, ¹³C, ³¹P NMR spectra of synthetic intermediates

6. X-ray single crystallography

The single crystals of compound cage-L1, cage-L3 and cage-L4 were obtained by the slow diffusion methanol to the CH_2Cl_2 solution of the cage molecule. The detail stuctures information was uploaded to The Cambridge Crystallographic Data Centre (CCDC) and the data can be obtained free of charge via www.ccdc.cam.ac.uk/structures.

Figure S1. ORTEP drawing of cage-L1 with 50% probability thermal ellipsoids. (CCDC number: 2070376)

Identification code	Cage-L1
Empirical formula	$C_{66}H_{72}N_6P_2$
Formula weight	1011.23
Temperature/K	100.00(10)
Crystal system	tetragonal
Space group	P4 ₁ 22
a/Å	17.1786(5)
b/Å	17.1786(5)
c/Å	24.7552(6)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	7305.3(4)
Ζ	4
$\rho_{calc}g/cm^3$	0.919
µ/mm ⁻¹	0.809

F(000)	2160.0
Crystal size/mm ³	0.13 imes 0.12 imes 0.11
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	5.144 to 147.518
Index ranges	$-20 \le h \le 17, -20 \le k \le 15, -30 \le l \le 25$
Reflections collected	25027
Independent reflections	7230 [$R_{int} = 0.0796$, $R_{sigma} = 0.0620$]
Data/restraints/parameters	7230/0/337
Goodness-of-fit on F ²	1.071
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0679, wR_2 = 0.1824$
Final R indexes [all data]	$R_1 = 0.0785, wR_2 = 0.1946$
Largest diff. peak/hole/eÅ-3	0.33/-0.41
Flack parameter	0.00(2)

Figure S2. ORTEP drawing of cage-L3 with 50% probability thermal ellipsoids. (CCDC number: 2070380).

Identification code	Cage-L3
Empirical formula	$C_{61.33}H_{55.33}Cl_4F_6N_6P_2$
Formula weight	1194.19
Temperature/K	229.97
Crystal system	triclinic
Space group	P1
a/Å	15.478(6)
b/Å	17.328(8)
c/Å	20.278(9)
α/°	76.67(3)
β/°	85.24(2)
$\gamma/^{\circ}$	64.164(15)
Volume/Å ³	4762(4)
Ζ	3
$\rho_{calc}g/cm^3$	1.249
µ/mm ⁻¹	0.296
F(000)	1852.0
Crystal size/mm ³	$0.11 \times 0.12 \times 0.14$
Radiation	MoKα (λ = 0.71073)
20 range for data collection/°	4.406 to 54.998
Index ranges	$-19 \le h \le 20, -22 \le k \le 22, -26 \le l \le 26$
Reflections collected	104371
Independent reflections	41971 [$R_{int} = 0.0372$, $R_{sigma} = 0.0514$]
Data/restraints/parameters	41971/18/2143
Goodness-of-fit on F ²	1.016
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0691, wR_2 = 0.1855$
Final R indexes [all data]	$R_1 = 0.0998, wR_2 = 0.2152$
Largest diff. peak/hole / e Å ⁻³	0.70/-0.68
Flack parameter	0.058(14)

Figure S3. ORTEP drawing of cage-L4 with 15% probability thermal ellipsoids. (CCDC number: 2070417).

Identification code	Cage-L4
Empirical formula	$C_{61}H_{42}Cl_2F_{12}N_6P_2$
Formula weight	1219.84
Temperature/K	250.01
Crystal system	hexagonal
Space group	P6 ₅ 22
a/Å	23.8636(12)
b/Å	23.8636(12)
c/Å	22.2433(10)
α/°	90
β/°	90
$\gamma^{\prime \circ}$	120
Volume/Å ³	10969.9(12)
Ζ	6
$\rho_{cale}g/cm^3$	1.108
μ/mm ⁻¹	0.199
F(000)	3732.0
Crystal size/mm ³	0.12 imes 0.1 imes 0.08
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.346 to 55.144
Index ranges	$-31 \le h \le 20, -13 \le k \le 31, -28 \le l \le 18$
Reflections collected	37707

Table S3.	Crystal	data	for	cage-L4
	v			0

Independent reflections	8447 [$R_{int} = 0.0529, R_{sigma} = 0.0574$]
Data/restraints/parameters	8447/109/363
Goodness-of-fit on F ²	0.985
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0596, wR_2 = 0.1689$
Final R indexes [all data]	$R_1 = 0.1406, wR_2 = 0.2096$
Largest diff. peak/hole/e Å ⁻³	0.17/-0.18
Flack/Hooft parameter	0.02(3)/0.08(3)

7. NMR and ESI-HRMS characterizations of cage-L1

¹H NMR for cage-L1

¹³C NMR for cage-L1

ESI-HRMS spectrum for cage-L1

8. NMR and ESI-HRMS characterizations of cage-L2

³¹P NMR for cage-L2

---6.92

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

ESI-HRMS spectrum for cage-L2

9. NMR and ESI-HRMS characterizations of cage-L3

¹H NMR for cage-L3

³¹P NMR for cage-L3

ESI-HRMS spectrum for cage-L3

Mass	Intensity	Intensity [%]	Formula	Calculated Mass	Difference [mDa]	Difference [ppm]	DBE
1035.38346	22935.82	100.00	C68 H49 N4 F6	1035.38559	-2.14	-2.06	43.5
			C64 H52 N5 F6 P	1035.38590	-2.45	-2.36	39.0
			C60 H55 N6 F6 P2	1035.38621	-2.76	-2.66	34.5
	Mass 1035.38346	Mass Intensity 1035.38346 22935.82	Mass Intensity Intensity [%] 1035.38346 22935.82 100.00	Mass Intensity Intensity Formula 1035.38346 22935.82 100.00 C68 H49 N4 F6 C64 H52 N5 F6 P C60 H55 N6 F6 P2	Mass Intensity Intensity [%] Formula Calculated Mass 1035.38346 22935.82 100.00 C68 H49 N4 F6 1035.38559 C64 H52 N5 F6 P 1035.38590 C60 H55 N6 F6 P2 1035.38621	Mass Intensity Intensity Formula Calculated Mass Difference [mDa] 1035.38346 22935.82 100.00 C68 H49 N4 F6 1035.38559 -2.14 C64 H52 N5 F6 P 1035.38590 -2.45 -2.45 -2.76	Mass Intensity Intensity Formula Calculated Mass Mass Mass Mass Mass Mass Mass Mass Mass Mass Difference Difference Difference Difference Difference Ippm] 1035.38346 22935.82 100.00 C68 H49 N4 F6 1035.38559 -2.14 -2.06 -2.45 -2.36 C60 H55 N6 F6 P2 1035.38621 -2.76 -2.66

10. NMR and ESI-HRMS characterizations of cage-L4

¹H NMR for cage-L4

³¹P NMR for cage-L4

ESI-HRMS spectrum for cage-L4

11. Gas chromatography spectra

Gas chromatography spectrum for L1 in Table 1

Gas chromatography spectrum for Cage-L1 in Table 1

Gas chromatography spectrum for L2 in Table 1

Gas chromatography spectrum for Cage-L2 in Table 1

Gas chromatography spectrum for L3 in Table 1

Gas chromatography spectrum for Cage-L3 in Table 1

Gas chromatography spectrum for L4 in Table 1

Gas chromatography spectrum for Cage-L4 in Table 1

Gas chromatography spectrum for PPh₃ in Table 1

Gas chromatography spectrum for Cage-PPh₃ in Table 1

12. References

- Frisch, M. J. et al. Gaussian 09, revision D.01; Gaussian, Inc.: Pittsburgh, PA, 2009.
- (2) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627.
- (3) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B, 2009, 113, 6378-6396.
- (4) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101-194118.
- (5) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys., 2010, 132, 154104.