Electronic Supplementary Information

In Situ growth of octa-phenyl polyhedral oligomeric silsesquioxane nanocages over fluorinated graphene nanosheets: super-wetting coatings for oil and organic Sorption

Pushparaj Loganathan,^{a,c} Ravi Yogapriya,^b Arunkumar Chinnusamy,^a K. K. R. Datta,^{b*} Swaminathan Shanmugan^{a*}

^aDepartment of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India,

^bFunctional Nanomaterials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India

^cDepartment of Chemistry, Christ University, Bengaluru, Karnataka 560029, India Corresponding authors: K. K. R. Datta (<u>kumarard@srmist.edu.in</u>, <u>kkrdatta@gmail.com</u>), Swaminathan Shanmugan (<u>shanmugs2@srmist.edu.in</u>, <u>shanmugan0408@gmail.com</u>)

Contents

Figure S1. (a) N_2 Isotherm at 77 K for O-Ph-POSS-FG and (b) corresponding pore size distribution.

Figure S2. Surface topographies of O-Ph-POSS-FG material determined by AFM.

Figure S3. Photograph of (a) Commercial PU sponge and (b) O-Ph-POSS-FG@Sponge.

 Table S1 Density and porosities of both pristine sponge as well as O-Ph-POSS-FG@sponges

 (4 units)

Figure S4. Water contact angle (WCA) of O-Ph-POSS-FG@Sponge.

Figure S5. WCA measurements of (a) 1 year old O-Ph-POSS-FG@Sponge and (b) 1 week old O-Ph-POSS-FG@Sponge.

Figure S6. Mechanical properties of O-Ph-POSS-FG@Sponge in different conditions followed by the evaluation of WCA.

Figure S7. Photograph of (a) PU sponge in water and (b) O-Ph-POSS-FG@Sponge on water. **Figure S8.** FT-IR spectra of untreated O-Ph-POSS-FG@Sponge and recycled O-Ph-POSS-FG@Sponge after (a) Hexane, (b) Chloroform (c) Toluene and (d) cyclohexane sorption respectively.

Figure S9. Flux recovery ratio (FRR) and irreversible fouling ratio (RIR) of O-Ph-POSS-FG@Sponge for oil absorption.

Figure S10. (a) Pump oil reusability test using O-Ph-POSS-FG@Sponge; (b) Oil separation from water mixture using O-Ph-POSS-FG@Sponge.

Figure S11. O-Ph-POSS-FG in (a) Acid (2 M) and (b) Base media (2 M).

Figure S12. O-Ph-POSS-FG@Sponge (a) Acid (2 M) and (b) Base media (2 M).

Figure S13. FE-SEM images of (a) Acid treated O-Ph-POSS-FG@Sponge and (b) Base treated O-Ph-POSS-FG@Sponge.

Figure S14. Photographs showing the floatability behaviour of O-Ph-POSS-FG@Sponge (a) acidic, (b) alkaline, (c) sea water and (d) normal water.

Figure S15. Toluene/water separation (a) supercool condition at -40 °C and (b) superheat condition at 100 °C.

Table S2. Hydrophobicity, absorption capacities, and separation efficiency of various POSS and 2D-based hydrophobic materials comparison with present work.

Supplementary Movies Video S1 and S2

References

Figure S1. (a) N_2 isotherms at 77 K for O-Ph-POSS-FG and (b) corresponding pore size distribution.

Figure S2. Surface topographies of O-Ph-POSS-FG material determined by AFM.

Figure S3. Photograph of (a) Commercial PU sponge and (b) O-Ph-POSS-FG@Sponge.

Table S1. Density and porosities of both pristine sponge as well as O-Ph-POSS-FG@sponges

 (4 units)

	Density	Porosity	
Uncoated Sponge	0.0601 g/cm ³	99%	
O-Ph-POSS- FG@Sponge-1	0.08 g/cm ³	98.67%	
O-Ph-POSS- FG@Sponge-2	0.078 g/cm ³	98.70%	
O-Ph-POSS- FG@Sponge-3	0.079 g/cm ³	98.69%	
O-Ph-POSS- FG@Sponge-4	0.076 g/cm ³	98.74%	

Apparent densities were calculated by measuring their masses and dimensions. The porosity was calculated using the following equations.¹

Porosity = $(1 - \rho/\rho_s) \times 100\%$

where ρ is the bulk density of the sponges and ρ_s is the density of raw material sponge.

Figure S4. Water contact angle of O-Ph-POSS-FG@Sponge.

Figure S5. WCA measurements of (a) 1 year old O-Ph-POSS-FG@Sponge and (b) 1 week old O-Ph-POSS-FG@Sponge.

Figure S6. Mechanical properties of O-Ph-POSS-FG@Sponge in different conditions followed by the evaluation of WCA.

Figure S7. Photograph of (a) PU sponge in water and (b) O-Ph-POSS-FG@Sponge on water.

Figure S8. FT-IR spectra of untreated O-Ph-POSS-FG@Sponge and recycled O-Ph-POSS-FG@Sponge after (a) Hexane, (b) Chloroform (c) Toluene and (d) cyclohexane sorption respectively.

Figure S9. Flux recovery ratio (FRR) and irreversible fouling ratio (RIR) of O-Ph-POSS-FG@Sponge for oil absorption.

The anti-oil fouling property of the O-Ph-POSS-FG@Sponge was evaluated by two indexes of the flux recovery ratio (FRR) and irreversible fouling ratio (RIR). In general, FRR means that the variation of absorption capacity of sponges before and after use. The RIR indicate the changing rate of absorption capacity of sponges.¹

which were calculated by the formula

 $FRR = (J_{w2}/J_{w1}) \times 100\%$

RIR = $[J_{w1} - J_{w2})/J_{w1}] \ge 100\%$

where J_{w1} is original absorption capacity and J_{w2} is last absorption capacity after desorption.

Figure S10. (a) Pump oil reusability test using O-Ph-POSS-FG@Sponge; (b) Oil separation from water mixture using O-Ph-POSS-FG@Sponge.

Figure S11. O-Ph-POSS-FG in (a) Acidic (2 M) and (b) Alkaline media (2 M).

Figure S12. O-Ph-POSS-FG@Sponge (a) Acidic (2 M) and (b) Alkaline media (2 M).

Figure S13. FE-SEM images of (a) Acid treated O-Ph-POSS-FG@Sponge and (b) Alkaline treated O-Ph-POSS-FG@Sponge.

Figure S14. Photographs showing the floatability behaviour of O-Ph-POSS-FG@Sponge (a) acidic, (b) alkaline, (c) sea water and (d) normal water.

Figure S15. Toluene/water separation (a) supercool condition at -40 °C and (b) superheat condition at 100 °C.

Table S2. Hydrophobicity, absorption capacities, and separation efficiency of various POSS

S .	Material	Water	Absorption	Separation	Application	Ref
No		Contact	capacity	efficiency		
		Angle [°]				
1	ODT-POSS-CT	144	1600-4800	-	Hydrophobic cotton	
	fabric membrane		wt%		fabric ODT-POSS-	2
					CT membrane for	
					oil-water separation	
2	P(MMA-SMA-	153	-	99 %	Oil-water	3
	MAPOSS)				separation	
3	OV-POSS@MF	141	-	-	Oil-water	
					separation	4
					performance	
4	TiO ₂ -SH-	157.6	-	99 %	Self-cleaning and	
	POSS@CT				Oil-water	5
					separation	
5	POSS/PDMS	161	-	>97%	Oil-water	
	modified				separation, Self-	6
	polyacrylate				cleaning and	
					antifouling	
6	POSS-modified	155	-	-	Oil absorption from	7
	Luffa sponge				water	
7	Ph-POSS@HKUST-	137±4	130-480	>96	Oil-water	
	1		wt%		separation	8
8	PIM-1/POSS	155	-	99 %	Oil-water	
					separation and	9
					cleanup of oil	
					soluble	
					contaminants	
9	POSS-MPTMS	142	280 wt%	96%	Oil-water	10
					separation and self-	
					cleaning process	
10	ZIF-POSS	157	540-860	>99%	Reusable sorbent	11
			wt%		material for	
					separation of	
					organic liquids	
					separation from	
					water	
11	GO-ePOSS	145	-	-	Oil-water	12
L					separation	
12	F-SQs-ECA-PU	>150	-	-	Oil-water	
	sponges				separation	13
	(Fluoro				and metal	
	silsesquioxanes				anticorrosion	

and 2D-based hydrophobic materials comparison with present work.

	with Ethyl					
	Cyano Acrylate)					
13	<i>f</i> -FG@ZIF-67	140±1	540-860	>99%	Oil and organic	14
	functionalized		wt%.		solvent sorption	
	fluorinated graphene					
14	HFGO@ZIF-8	162	150-600	-	Oil-water	15
	composite		wt%		separation	
	Sponge@HFGO@Z					
	IF-8					
15	FGO@Al-MOG	125			Oil and organic	16
					solvent absorption	
					and separation	
16	FG-HKUST-1	130±3	-	-	Oil-water	17
	composite sponge				separation	
17	FG supported ZIF-7	160±2	-	94-98%	Percolation	18
	and ZIF-11 over	145±1			networks for	
	stainless steel mesh	155±2			selective	
	& cotton cloth				permeation of oils	
					and chlorinated	
					solvents	
18	O-Ph-POSS-	151±2	1500-5500	90-99%	Oil and organic	Present
	FG@Sponge		wt%		water separation	work
					Toluene-water	
					Emulsion	
					separation	

Supplementary Movies.

The videos of continuous separation for toluene (Video S1) and chloroform (Video S2) from solvent/water mixture by O-Ph-POSS-FG@Sponge were played at 2x speed.

References

- 1. J. Wang, Y. Chen, Q. Xu, M. Cai, Q. Shi and J. Gao, Sci. Rep., 2021, 11, 11960.
- 2. T. C. Lin, J. S. Chang and D. J. Lee, Int. J. Biol. Macromol., 2023, 253, 126748.
- D. Guo, K. Hou, S. Xu, Y. Lin, L. Li, X. Wen and P. Pi, J. Mater. Sci., 2018, 53, 6403–6413.
- J. Chen, X. Zhang, L. Zhang, X. Jiang, F. Xiao, J. Hu and Ding, J. Mol. Liq., 2024, 404, 124941.
- 5. M. Yang, W. Liu, L. Liang, C. Jiang, C. Liu, Y. Xie, H. Shi, F. Zhang and K. Pi, Cellulose,

2020, **27**, 2847–2857.

- 6. J. Zhou, J. Yuan and L. Wang, J. Mater. Sci., 2024, 59, 55–72.
- 7. Z. Wang, H. Ma, B. Chu and B. S. Hsiao, Polymer, 2017, 126, 470-476.
- K. Dharmaraj, M. S. Kumar, N. Palanisami, M. Prakash, P. Loganathan and S. Shanmugan, *Dalton Trans.*, 2024, 53, 13602–13616.
- 9. C. Zhang, P. Li and B. Cao, Ind. Eng. Chem. Res., 2015, 54, 8772-8781.
- Y. Deng, D. Han, Y. Y. Deng, Q. Zhang, F. Chen and Q. Fu, *Chem. Eng. J.*, 2020, 379, 122391.
- P. Loganathan, K. K. R. Datta and S. Shanmugan, *Inorg. Chem. Front.*, 2021, 8, 2288– 2298.
- 12. Y. Liu, J. Zhou, E. Zhu, J. Tang, X. Liu and W. Tang, Carbon, 2015, 82, 264–272.
- 13. T. Zhang, Q. Ge and H. Liu, ACS Appl. Eng. Mater., 2024, 2, 215–223.
- 14. R. Yogapriya and K. K. R. Datta, J. Nanosci. Nanotechnol., 2020, 20, 2930-2938.
- K. Jayaramulu, K. Kumara, R. Datta, C. Rçsler, M. Petr, M. Otyepka, R. Zboril and R. A. Fischer, *Angew. Chem.* 2016, 55, 1178–1182.
- K. Jayaramulu, F. Geyer, M. Petr, R. Zboril, D. Vollmer and R.A. Fischer, *Adv. Mater.*, 2019, **31**, e1900820.
- 17. R. Yogapriya and K. R. D. Kasibhatta, ACS Appl. Nano Mater., 2020, 3, 5816-5825.
- 18. I. Prasanthi and K. K. R. Datta, Inorg. Chem., 2023, 62, 17791-17803.