Electronic Supporting Information

High-pressure synthesis and crystal structure analysis of PbTeO₄, a UV transparent material

Michael Hladik, ¹ Armin Penz, ¹ Felix R. S. Purtscher, ¹ Thomas S. Hofer, ¹ Gunter Heymann, ^{1*} Matthias Weil ^{2*}

 Department of General, Inorganic and Theoretical Chemistry Universität Innsbruck
 Center for Chemistry and Biomedicine
 Innrain 80-82
 6020 Innsbruck / Austria

2) Institute for Chemical Technologies and Analytics
Division of Structural Chemistry
TU Wien
Getreidemarkt 9/E164-05-1
1060 Vienna / Austria

Table of Contents

Figures

- 1. Electron micrographs of PbTeO₄.
- 2. Electron micrograph of PbTeO₄ with selected spots for measurement and corresponding EDX spectra.
- 3. XRPD measurement (black) of the product obtained after thermal analysis measurement. The red curve corresponds to database entry of tetragonal PbTeO₃.
- 4. Dependence of eigenvalues of the thermal expansion for PbTeO₄.
- 5. Calculated XRPD pattern after energy minimization (red) compared to the data simulated from the experimentally determined single crystal structure (black).

Tables

- 1. EDX measurements of PbTeO₄. Determined compositions based on selected measurement spots.
- 2. Comparison of the optimized unit cell parameters obtained for PbTeO₄ at HSEsol level of theory with the experimentally determined values at 295 K.
- 3. Optimized atom positions (given in fractional coordinates) of $PbTeO_4$ in the I2/a setting at HSEsol level of theory.
- 4. Complete list of calculated vibrational modes of $PbTeO_4$ at HSEsol level of theory. The associated energy is provided in units of frequency v and the irreducible representation is abbreviated as Irrep. All possible atom pairs are calculated based on their van der Waals radii. The relative motion for each pair of bonded atoms was decomposed into three components: i) stretching vibration (S) along the A-B bond, ii) in-plane angle bending (B) involving a third atom C and iii) out-of-plane angle bending (O) involving a third atom C. The classification of the individual motions is based on a relative contribution greater than 85 % for bond stretching and in-plane angle bending. Collective vibrational motions of entire structural elements are indicated with an R. In any other case, the motion is classified as out-of-plane angle bending. The associated unit cell and respective atom positions in fractional coordinates are given in the C2/c setting at the end of the Table.

Fig. S1. Electron micrographs of $PbTeO_4$.

Fig. S2. Electron micrograph of $PbTeO_4$ with selected spots for measurement and corresponding EDX spectra.

Fig. S3. XRPD measurement (black) of the product obtained after thermal analysis measurement. The red curve corresponds to database entry of tetragonal $PbTeO_3$.

Fig. S4. Dependence of eigenvalues of the thermal expansion for PbTeO₄.

Fig. S5. Calculated XRPD pattern after energy minimization (red) compared to the data simulated from the experimentally determined single crystal structure (black).

spors.							
Spectrum	Element	Signal	Line	Wt%	Wt%	Atomic %	Standard
112		Туре			Sigma		
	0	EDS	K series	18.01	0.23	69.86	SiO ₂
	Те	EDS	L series	29.89	0.24	14.54	HgTe
	Pb	EDS	M series	52.10	0.29	15.61	PbTe
	Total			100.00		100.00	
Spectrum	Element	Signal	Line	Wt%	Wt%	Atomic %	Standard
113		Туре			Sigma		
	0	EDS	K series	18.45	0.23	70.44	SiO ₂
	Те	EDS	L series	29.97	0.24	14.35	НgТе
	Pb	EDS	M series	51.58	0.29	15.21	PbTe
	Total			100.00		100.00	
Spectrum	Element	Signal	Line	Wt%	Wt%	Atomic %	Standard
123		Туре			Sigma		
	0	EDS	K series	16.31	0.22	67.21	SiO ₂
	Те	EDS	L series	31.00	0.25	16.02	HgTe

Table S1. EDX measurements of PbTeO₄. Determined compositions based on selected measurement spots.

P	b EDS	M series	52.70	0.29	16.77	РЬТе
То	tal		100.00		100.00	

Table S2. Comparison of the optimized unit cell parameters obtained for $PbTeO_4$ at HSEsol level of theory with the experimentally determined values at 295 K.

Method	a / Å	b / Å	c / Å	β/°	V / ų
Single-crystal	5.4142(4)	4.9471(4)	12.0437(11)	99.603(3)	318.07(5)
Powder	5.41173(10)	4.94608(9)	12.0324(2)	99.5935(12)	317.565(10)
HSEsol	5.4123	4.9476	12.045	99.721	317.91

Table S3. Optimized atom positions (given in fractional coordinates) of PbTeO₄ in the I2/a setting at HSEsol level of theory.

Atom	X	У	Z
Pb1	0.25	-0.25849	0
Te1	0.25	0.25	-0.25
01	0.33851	0.11365	-0.10387
02	0.02289	-0.44769	0.19587

Table S4. Complete list of calculated vibrational modes of PbTeO₄ at HSEsol level of theory. The associated energy is provided in units of frequency v and the irreducible representation is abbreviated as Irrep. All possible atom pairs are calculated based on their van der Waals radii. The relative motion for each pair of bonded atoms was decomposed into three components: i) stretching vibration (S) along the A-B bond, ii) in-plane angle bending (B) involving a third atom C and iii) out-of-plane angle bending (O) involving a third atom C. The classification of the individual motions is based on a relative contribution greater than 85 % for bond stretching and in-plane angle bending. Collective vibrational motions of entire structural elements are indicated with an R. In any other case, the motion is classified as out-of-plane angle bending. The associated unit cell and respective atom positions in fractional coordinates are given in the *C*2/*c* setting at the end of the Table.

Mode	v / cm ⁻¹	Irrep	Туре	Atom A	Atom B	Atom C
1	55.2075	B_{g}	R	Pb2	Pb1	05
		-	R	Pb2	Pb1	08
			R	Pb2	Pb1	06
			R	Pb2	Pb1	07
2	61.9618	B _u	R	05	Pb1	Pb2
			R	06	Pb1	Pb2
			R	07	Pb1	06
			R	08	Pb1	05
			R	05	Pb2	08
			R	06	Pb2	07
			R	07	Pb2	Pb1
			R	08	Pb2	Pb1
3	99.9834	A _u	R	05	Pb1	06
			R	06	Pb1	05
			R	07	Pb1	08
			R	08	Pb1	07

			R	05	Pb2	06
			R	06	Pb2	05
			R	07	Pb2	08
			R	08	Pb2	07
4	101.689	B_g	S	Pb2	Pb1	Pb2
			S	Pb2	Pb1	Pb2
			S	Pb2	Pb1	Pb2
			S	Pb2	Pb1	Pb2
5	111.5628	A_g	В	Pb2	Pb1	Pb2
			В	Pb2	Pb1	Pb2
			В	Pb2	Pb1	Pb2
			В	Pb2	Pb1	Pb2
6	121.1118	B_u	В	Pb1	05	Te3
			В	Pb1	06	Te4
			0	Pb1	07	Te3
			0	Pb1	08	Te4
			0	Pb2	05	Te3
			0	Pb2	06	Te4
			В	Pb2	07	Te3
			В	Pb2	08	Te4
7	155.4987	A_g	В	09	Te3	012
			0	010	Te3	09
			В	011	Te3	012
			0	012	Te3	09
			0	09	Te4	010
			В	010	Te4	09
			0	011	Te4	010
			В	012	Te4	09
8	195.4488	A_u	В	Te3	010	Te4
			В	Te3	012	Te4
			В	Te4	09	Te3
			В	Te4	011	Te3
9	206.1675	B_u	В	05	Pb1	Pb2
			В	06	Pb1	Pb2
			В	07	Pb1	06
			В	08	Pb1	05
			В	05	Pb2	08
			В	06	Pb2	07
			В	07	Pb2	Pb1
			В	08	Pb2	Pb1
			В	05	Te3	09
			В	0/	Te3	09
			В	06	Te4	012
10	210 7505	۸	<u>В</u>	08	164	010
10	210./202	A_g	Б	05	PD1	202 540
			В П	00		PUZ
			Ď	07	PU1	
			Ď		PD1	05
			В	05	PDZ	08

			В	06	Pb2	07
			В	07	Pb2	Pb1
			В	08	Pb2	Pb1
			В	05	Te3	09
			В	07	Te3	09
			В	06	Te4	012
			В	08	Te4	012
11	245.6428	B _a	В	05	Pb1	06
		5	В	06	Pb1	05
			В	07	Pb1	06
			В	08	Pb1	05
			В	05	Pb2	08
			В	06	Pb2	07
			В	07	Pb2	08
			В	08	Pb2	07
			В	05	Te3	09
			В	07	Te3	09
			В	06	Te4	012
			В	08	Te4	012
12	247.8098	A _u	0	05	Te3	09
			0	07	Te3	09
			В	09	Te3	012
			В	011	Te3	012
			0	06	Te4	012
			0	08	Te4	012
			В	O10	Te4	09
			В	012	Te4	09
13	254.6722	B _u	В	09	Te3	012
			В	011	Te3	012
			В	O10	Te4	09
			В	012	Te4	09
14	273.4607	A _u	0	010	Te3	09
			0	012	Te3	09
			0	09	Te4	010
			0	011	Te4	010
15	286.2286	B _q	0	09	Te3	012
		5	В	O10	Te3	05
			0	011	Te3	012
			В	012	Te3	05
			В	09	Te4	06
			0	O10	Te4	09
			В	011	Te4	06
			0	012	Te4	09
16	293.9963	A _u	0	05	Te3	09
			0	07	Te3	09
			В	09	Te3	012
			В	010	Te3	05
			В	011	Te3	012
			В	012	Te3	05

			0	06	Te4	012
			0	08	Te4	012
			В	09	Te4	06
			В	010	Te4	09
			В	011	Te4	06
			В	012	Te4	09
17	294.404	B _u	0	010	Te3	09
			0	012	Te3	09
			0	09	Te4	010
			0	011	Te4	010
18	354.3651	A_g	В	05	Pb1	Pb2
			В	06	Pb1	Pb2
			S	07	Pb1	
			S	08	Pb1	
			S	05	Pb2	
			S	06	Pb2	
			В	07	Pb2	Pb1
			В	08	Pb2	Pb1
			В	Te3	05	Pb2
			В	Te3	07	Pb1
			В	Te4	06	Pb2
			В	Te4	08	Pb1
19	355.6528	B _u	В	Te3	05	Pb1
			В	Te3	07	Pb2
			В	Te4	06	Pb1
			В	Te4	08	Pb2
20	399.3387	B_g	В	09	Te3	012
			0	O10	Te3	09
			В	011	Te3	012
			0	012	Te3	09
			0	09	Te4	010
			В	010	Te4	09
			0	011	Te4	010
			В	012	Te4	09
21	423.2132	A_u	В	Te3	09	Te4
			В	Te3	011	Te4
			В	Te4	010	Te3
			В	Te4	012	Te3
22	436.9384	A_g	В	09	Te3	05
			В	010	Te3	05
			В	011	Te3	05
			В	012	Te3	05
			В	09	Te4	06
			В	010	Te4	06
			В	011	Te4	06
			В	012	Te4	08
23	450,7137	A,,	В	Te3	05	Pb2
	10017 207	u				
		u	В	Te3	07	Pb1

			В	Te4	08	Pb1
24	461.7121	B _q	В	Te3	09	Te4
		5	В	Te3	010	Te4
			В	Te3	011	Te4
			В	Te3	012	Te4
			В	Te4	09	Te3
			В	Te4	010	Te3
			В	Te4	011	Te3
			В	Te4	012	Te3
25	468.5529	B _u	В	09	Te3	05
			В	Te3	010	Te4
			В	011	Te3	05
			В	Te3	012	Te4
			В	Te4	09	Te3
			В	O10	Te4	06
			В	Te4	011	Te3
			В	012	Te4	08
26	598.1403	Ba	S	Pb1	05	Te3
		9	S	Pb1	06	Te4
			В	Pb1	07	Te3
			В	Pb1	08	Te4
			В	Pb2	05	Te3
			В	Pb2	06	Te4
			S	Pb2	07	Te3
			S	Pb2	08	Te4
			S	05	Te3	
			S	07	Te3	
			S	06	Te4	
			S	08	Te4	
27	613.4356	Aa	S	09	Te3	
		9	S	Te3	010	Te4
			S	011	Te3	
			S	Te3	012	Te4
			S	Te4	09	Te3
			S	O10	Te4	
			S	Te4	011	Te3
			S	012	Te4	
28	658.6918	B _u	S	Te3	09	Te4
		ŭ	S	O10	Te3	
			S	Te3	011	Te4
			S	012	Te3	
			S	09	Te4	
			S	Te4	010	Te3
			S	011	Te4	
			S	Te4	012	Te3
29	674.588	A ₁₁	S	09	Te3	
-		ŭ	S	Te3	010	Te4
			S	011	Te3	
			S	Te3	012	Te4

			S	Te4	09	Te3
			S	O10	Te4	
			S	Te4	011	Te3
			S	012	Te4	
30	716.7821	B _u	S	05	Te3	
			S	07	Te3	
			S	06	Te4	
			S	08	Te4	
31	738.2594	A_u	S	05	Te3	
			S	07	Te3	
			S	06	Te4	
	740 0007		<u> </u>		164	Tal
32	/40.865/	A_g	S	PD1	05	Te3
			З Р		00	Te4
			B	PD1 Pb1	07	
			B	Pb1 Ph2	05	Te4
			B	Ph2	06	Te4
			S	Pb2	07	Te3
			S	Pb2	08	Te4
			S	05	Te3	
			S	07	Te3	
			S	O6	Te4	
			S	08	Te4	
33	782.3425	B_g	S	09	Te3	
			S	Te3	010	Te4
			S	011	Te3	
			S	Te3	012	Te4
			S	Te4	09	Te3
			S	010	Te4	
			S	Te4	011	Te3
			5	012	Te4	
Unit Cell:	a / Å	b/Å	c / Å	β/°	V/	ų
	12.3435	4.9476	5.4123	105.89	317.	.911
	Atom (Index)	х	У	z		
	Pb1(1)	0.25849	0.25849	0.25000		
	Pb(1)	-0.25849	-0.25849	-0.25000		
	Te1(1)	-0.50000	0.00000	0.00000		
	Te2(1)	0.00000	-0.50000	0.50000		
	O1(1)	-0.21752	-0.00978	0.05762		
	O2(1)	-0.00978	-0.21752	0.44238		
	O3(1)	0.21752	0.00978	-0.05762		
	O4(1)	0.00978	0.21752	-0.44238		
	05(2)	0.35645	-0.25183	0.32702		

O6(2)	-0.25183	0.35645	0.17298
07(2)	-0.35645	0.25183	-0.32702
O8(2)	0.25183	-0.35645	-0.17298