Electronic Supporting Information

Application of a simple copper(II) complex compound as an epinephrine selective voltammetric sensor in the presence of uric acid in aqueous conditions

Daria Nowicka,*^aKarol Garbaczewski,^a Teresa Łuczak,^aGiuseppe Forte,^b Giuseppe Consiglio,^c Maciej Kubicki,^a Violetta Patroniak^a and Adam Gorczyński *^a

- a. Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- b. Department of Drug Science and Health University of Catania, Via S. Sofia 64, 95125
- c. Department of Chemical Science University of Catania, Via S. Sofia 64, 95125, Italy

Correspondence* <u>d.nowicka@amu.edu.pl;</u> <u>adam.gorczynski@amu.edu.pl</u>

Table of contents for Supporting Information

1.	Synthesis and physical characterization	2
2.	Crystallographic studies	4
3.	Characterization of the bare gold electrode	5
4.	Electrochemical experiments.	6

1. Synthesis and physical characterization

Fig. S1. Scheme of ligand L $[C_{10}H_{11}N_5]$ synthesis.

Fig. S2. Scheme of copper(II) complex $[CuL_2](BF_4)_2$ synthesis.

Fig. S3. FT-IR spectrum of copper(II) complex [CuL₂](BF₄)₂.

Fig. S4. Thermogravimetric analysis of compound 1.

Fig. S5. Comparison of experimentally measured and theoretically calculated UV-Vis spectra of CuL_2 in water (A) and methanol (B), at the CAM-B3LYP/6-311+G(2d,p)/CPCM level.

2. Crystallographic studies

Compound	CuL ₂				
Formula	$C_{20}H_{22}CuN_{10}^{2+}\cdot 2BF_{4-}\cdot CH_{3}OH\cdot O(C_{3}H_{7})_{2}$				
Formula weight	773.85				
Crystal system	monoclinic				
Space group	$P2_1/n$				
a(Å)	12.4491(4)				
b(Å)	13.8403(3)				
c(Å)	19.8972(6)				
β(°)	97.153(3)				
V(Å ³)	3401.59(17)				
Z	4				
$D_x(g \text{ cm}^{-3})$	1.511				
F(000)	1596				
μ(mm ⁻¹)	0.729				
Reflections:					
collected	19089				
unique (R _{int})	6945 (0.0401)				
with $I > 2\sigma(I)$	4856				
$R(F) [I > 2\sigma(I)]$	0.0692				
$wR(F^2)$ [I>2 $\sigma(I)$]	0.1582				
R(F) [all data]	0.1054				
$wR(F^2)$ [all data]	0.1777				
Goodness of fit	1.042				
max/min $\Delta \rho$ (e·Å ⁻³)	1.91/-0.80				
CCDC deposition	2346925				

 Table S1. Crystal data, data collection and structure refinement.

3. Characterization of the bare gold electrode

Fig. S6. (a) EDAX analysis of the bare Au electrode (2 μ m) and its (b) X-ray energy dispersion spectrum.

Fig. S7. Comparison of ATR-IR spectra of the CuL₂ complex and Cu/Au electrode.

4. Electrochemical experiments

Fig. S8. (a) CVs of the Cu/Au electrode in supporting electrolyte solution at various pH in the range from pH 3.0 = pH 11.0 in the presence of 0.5 mM EP, dE/dt = 0.1 Vs⁻¹. (b) Effect of pH on the peak potential during EP electrooxidation. Insert: effect of pH on the peak current.

Initial amount [mM]		Spiked a [mN	mount 1]	Found amount [mM]		Recovery [%]		RSD [%]	
EP	UA	EP	UA	EP	UA	EP	UA	EP	UA
0.100	0.50	0	0	0.102	0.49	102.0	98.0	2.0	1.8
0.100	0.50	0.01	0	0.111	0.51	100.9	102.0	1.9	1.9
0.100	0.50	0.03	0	0.133	0.48	99.3	96.0	2.6	1.8
0.100	0.50	0.05	0	0.148	0.51	98.7	102.0	1.6	2.2
0.50	0.50	0	0.1	0.52	0.59	104.0	98.3	2.2	1.7
0.50	0.50	0	0.3	0.48	0.84	96.0	105.0	1.6	1.5
0.50	0.50	0	0.6	0.49	1.14	98.0	103.6	1.8	1.7
0.50	0.50	0	1.0	0.51	1.52	102.0	101.3	2.1	1.8

Table S2. Determination of EP in the presence of UA (n = 3) at the Cu/Au electrode.

Type of interference	Found EP [mM]	Recovery [%]	RSD [%]
Na ⁺	0.489	97.8	2.4
K^+	0.512	102.4	3.5
Ca^{2+}	0.491	98.2	2.1
$\mathrm{NH_4^+}$	0.533	106.6	1.8
Mg^{2+}	0.529	105.8	2.7
SO ₄ ²⁻	0.479	95.8	3.2
$C_2O_4^{2-}$	0.518	103.6	2.1

Table S3. Sensing of 0.5 mM EP with addition of 5 mM of some interferents (n = 3) at the Cu/Au electrode.

Fig. S9. Graphs presenting (a) reproducibility and (b) long-term stability of the Cu/Au electrode.