Supporting Information for: Reactions of 1,1- and 1,2-bisboranes with a Protic Diamine and Hydrazine

Jason Yeung^a, Amir Yeganeh-Salman^a, Linkun Miao^a, Douglas W. Stephan^a*

^aDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6 Email: douglas.stephan@utoronto.ca; Phone: 416-946-3294

Table of Contents

1.1	General Information	2
1.2	Spectra of Ph ₃ SiCH(B(C ₆ F ₅) ₂)CH ₂ B(C ₆ F ₅) ₂ , 3	3
1.3	Spectra of PhCH2CH(B(C6F5)2(NH2))2C6H4, 4	6
1.4	Spectra of (C ₆ F ₅) ₂ B(NH)(NH ₂)C ₆ H ₄ , 5	10
1.5	Spectra of Me ₃ SiCH(B(C ₆ F ₅) ₂)CH ₂ B(C ₆ F ₅) ₂ (H ₂ N) ₂ C ₆ H ₄ , 6	13
1.6	Spectra of Me ₃ SiCH(B(C ₆ F ₅) ₂)CH ₂ (B(C ₆ F ₅)(NH ₂)(NH)C ₆ H ₄ , 7	16
1.7	Spectra of PhCH ₂ CH(B(C ₆ F ₅) ₂ (NH ₂)) ₂)·THF, 8	19
1.8	Generation of PhCH ₂ CH(B(C ₆ F ₅) ₂ NH ₂)(B(C ₆ F ₅)NH)·THF, 9	24
1.9	Spectra of Me ₃ SiCH(B(C ₆ F ₅) ₂)CHB(C ₆ F ₅)(N ₂ H ₃)·THF, 10	26
1.10	References	28

1.1 General Information

All preparative procedures were performed in an inert atmosphere of nitrogen using glovebox techniques or standard Schlenk line techniques. Dichloromethane (DCM, CH₂Cl₂), n-pentane, and n-hexane purchased from Sigma Aldrich were dried using a Grubbs-type Innovative Technologies solvent purification system. Benzene, and deuterated solvents (CDCl₃, C_6D_6 , CD_2Cl_2) were purchased from Sigma Aldrich and dried by distillation from sodium-benzophenone or calcium hydride, CaH₂, prior to use. All solvents were stored over activated 4 Å molecular sieves. Phenylacetylene and trimethylsilylacetylene were purchased from Sigma-Aldrich and distilled from molecular sieves prior to use. O-phenylenediamine (OPD) was purchased from Sigma-Aldrich and recrystallized from toluene prior to use. Hydrazine solution (1.0 M in THF) was purchased from Sigma-Aldrich and used without further purification. Bis(pentafluorophenyl)borane was prepared using literature procedures.¹ Plastic syringes and disposable needles were used to dispense solvents. Prior to use inside the glovebox, plastic syringes and disposable needles were placed under vacuum inside the antechamber of the glovebox overnight. All NMR spectra were collected at 298 K on Bruker Avance III 400 MHz, Bruker Avance NEO 400 MHz or Agilent DD2-500 MHz spectrometers in 3- or 5-mm diameter NMR tubes. ¹H chemical shifts are reported relative to proteo-solvent signals² (CDCl₃ δ = 7.26 ppm, $C_6D_6 \delta$ = 7.16 ppm and $CD_2Cl_2 \delta$ = 5.32 ppm). Data are reported as: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet, m = multiplet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, br = broad), coupling constants (Hz), integration and assignment. ${}^{13}C{}^{1}H$ chemical shifts are reported relative to proteo-solvent signals (CDCl₃ δ = 77.16 ppm, $C_6D_6 \delta$ = 128.06 ppm and $CD_2Cl_2 \delta$ = 53.84 ppm), while ¹¹B, ¹⁹F and ³¹P NMR chemical shifts are reported relative to (Et₂O)·BF₃, CFCl₃ and 85% H₃PO₄ external standards, respectively. Departmental facilities were used for mass spectrometry (DART+/-: JEOL AccTOF or ESI: Agilent 6538 Q-TOF).

1.2 Spectra of Ph₃SiCH(B(C₆F₅)₂)CH₂B(C₆F₅)₂, 3

¹H NMR (400 MHz, C₆D₆, 298 K) δ: 7.64 (m, 6H, Ar-*H*), 7.07 (m, 9H, Ar-H), 4.17 (br d, ³J_{HH} = 8 Hz, 1H, C*H*), 3.37 (dd, ²J_{HH} = 19 Hz, ³J_{HH} = 9 Hz, 1H, C*H*₂), 2.58 (br d, ²J_{HH} = 18 Hz, 1H, C*H*₂).

¹¹B NMR (128 MHz, C₆D₆, 298 K) δ: 74.0.

¹³C{¹H} NMR (101 MHz, C₆D₆, 298 K) δ : 146.8 (dm, ¹J_{CF} = 244 Hz, *o*-C₆F₅), 146.4 (dm, ¹J_{CF} = 247 Hz, *o*-C₆F₅), 143.8 (dm, ¹J_{CF} = 264 Hz, *m/p*-C₆F₅), 143.2 (dm, ¹J_{CF} = 260 Hz, *m/p*-C₆F₅), 137.9 (dm, ¹J_{CF} = 255 Hz, *m/p*-C₆F₅), 136.3 (s, *o*-C₆H₅), 132.9 (s, *p*-C₆H₅), 130.5 (s, *m*-C₆H₅), 115.1 (m, *i*-C₆F₅), 113.2 (m, *i*-C₆F₅), 37.2 (CH₂), 33.7 (CH).

¹⁹F NMR (377 MHz, C₆D₆, 298 K) δ: -128.9 (br, 4F, *o*-C₆F₅), -130.1 (d, ³J_{FF} = 19 Hz, 4F, *o*-C₆F₅), -146.2 (t, ³J_{FF} = 21 Hz, 2F, *p*-C₆F₅), -147.9 (t, ³J_{FF} = 20 Hz, 2F, *p*-C₆F₅), -160.1 (m, 4F, *m*-C₆F₅), -160.8 (m, 4F, *m*-C₆F₅).

Figure S 1. ¹H NMR (400 MHz, C₆D₆, 298 K) spectrum of *bis*-borane 3.

Figure S 3. ${}^{13}C{}^{1}H$ NMR (101 MHz, C₆D₆, 298 K) spectrum of *bis*-borane 3.

1.3 Spectra of PhCH₂CH(B(C₆F₅)₂(NH₂))₂C₆H₄, 4

¹H NMR (400 MHz, CD₂Cl₂, 298 K) δ : 7.36 (dd, ³*J*_{HH} = 5.9, 3.4 Hz, 2H, *H*_A*r*), 7.24 (dd, ³*J*_{HH} = 5.9, 3.5 Hz, 2H, *H*_A*r*), 7.01 – 6.88 (m, 3H, Ph-*H*_A*r*), 6.76 (s, 4H, NH₂), 6.52 (d, ³*J*_{HH} = 6.2 Hz, 2H, Ph-*H*_A*r*), 2.74 (br d, ³*J*_{HH} = 4.8 Hz, 2H, CH₂), 2.44 (t, ³*J*_{HH} = 5.9 Hz, 1H, *H*C(B(C₆F₅)₂)₂).

¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) δ: 0.7.

¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 298 K) δ : 147.8 (dm, ¹J_{CF} = 237 Hz, *o*-C₆F₅), 145.2 (*i*-Ph), 140.4 (dm, ¹J_{CF} = 237 Hz, *p*-C₆F₅), 137.8 (dm, ¹J_{CF} = 236 Hz, *m*-C₆F₅), 131.1 (OPD-C_{Ar}), 129.1 (*i*-OPD), 128.0 (*m/p*-Ph), 127.8 (OPD-C_{Ar}), 127.7 (*o*-Ph), 125.2 (*m/p*-Ph), 121.1 (br, *i*-C₆F₅), 119.8 (br, *i*-C₆F₅), 35.8 (br, CH(B(C₆F₅)₂)₂), 22.7 (br, PhCH₂).

¹³C{¹H} DEPT-135 NMR (101 MHz, CD₂Cl₂, 298 K) δ: 131.1 (OPD-*C*_{Ar}), 128.0 (*m/p*-Ph), 127.8 (OPD-*C*_{Ar}), 127.7 (*o*-Ph), 125.2 (*m/p*-Ph), 35.8 (br, CH(B(C₆F₅)₂)₂).

¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) δ: -130.2 (br, 2F, *o*-C₆F₅), -133.9 (br, 2F, *o*-C₆F₅), -156.5 (br, 2F, *p*-C₆F₅), -162.1 (br, 4F, *m*-C₆F₅). *Note: integrations are inaccurate due to broadening.*

 1 H, 13 C gHMBC (400 MHz / 101 MHz, CD₂Cl₂, 298 K) δ 1 H / δ 13 C: 7.3/ 131.2, 7.3/ 129.1, 7.0/ 145.4, 7.0/ 127.7, 6.6/ 128.0, 6.6/ 125.2, 2.8/ 145.2, 2.8/ 22.4, 2.5/ 145.2, 2.5/ 35.7.

Figure S 8. $^{13}C{^1H}$ DEPT-135 NMR (101 MHz, CD₂Cl₂, 298 K) spectrum of compound 4.

Figure S 9. ¹⁹F NMR (377 MHz, CDCl₃, 298 K) spectrum of compound 4.

Figure S 10. 1 H, 13 C gHMBC (400 MHz / 101 MHz, CD₂Cl₂, 298 K) spectrum of compound 4.

1.4 Spectra of (C₆F₅)₂B(NH)(NH₂)C₆H₄, 5

¹H NMR (400 MHz, CD₂Cl₂, 298 K) δ: 6.93 (br d, 2H, *H*_{Ar}), 6.83 (s, 2H, *H*_{Ar}), 5.67 (br, 3H, NH).

¹¹B NMR (128 MHz, CD₂Cl₂, 298 K) δ: 1.2.

¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 298 K) δ: 147.8 (dm, ${}^{1}J_{CF}$ = 237 Hz, *o*-C₆F₅), 140.6 (dm, ${}^{1}J_{CF}$ = 251 Hz, *p*-C₆F₅), 136.5 (dm, ${}^{1}J_{CF}$ = 253 Hz, *m*-C₆F₅), 123.8 (br, *i*-C₆F₅), 120.5 (C_{Ar}H), 116.7 (br, *i*-Ph), 112.1 (C_{Ar}H).

¹⁹F NMR (377 MHz, CD₂Cl₂, 298 K) δ: -137.4 (m, 2F, *o*-C₆F₅), -157.2 (t, 1F, ${}^{3}J_{FF}$ = 20 Hz, *p*-C₆F₅), -163.2 (m, 2F, *m*-C₆F₅).

HRMS (ESI+ Ionization, *m*/z): Calcd. for C₁₈H₈BF₁₀N₂⁺ ([M+H]⁺): 453.06261; Found: 453.06221.

Figure S 11. ¹H NMR (400 MHz, CD₂Cl₂, 298 K) spectrum of compound 5.

Figure S 12. $^{\rm 11}B$ NMR (128 MHz, CD $_2CI_2,$ 298 K) spectrum of compound 5.

S12

1.5 Spectra of Me₃SiCH(B(C₆F₅)₂)CH₂B(C₆F₅)₂(H₂N)₂C₆H₄, 6

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.25 (m, 1H, Ar-*H*), 7.10 (m, 1H, Ar-*H*), 6.95 (m, 1H, Ar-*H*), 6.75 (br s, 1H, N*H*), 6.39 (m, 2H, overlapping Ar-*H* and N*H*), 6.04 (br s, 1H, N*H*), 5.11 (br s, 1H, N*H*), 1.69 (br d, ${}^{2}J_{HH}$ = 18 Hz, 1H, C*H*₂), 0.93 (br s, 1H, overlapping C*H*₂), 0.75 (br s, 1H, C*H*), -0.49 (s, 9H, Si-C*H*₃).

¹¹B NMR (128 MHz, CDCl₃, 298 K) δ: 8.7 (br s), 0.8 (br s).

¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ: 129.9 (s, Ar*C*), 129.8 (s, Ar*C*), 128.6 (s, Ar*C*), 127.2 (s, Ar*C*), 124.0 (s, Ar*C*), 123.9 (s, Ar*C*), 17.6 (br s, *C*H₂), 16.3 (br s, *C*H), 0.4 (s, Si-*C*H₃).

¹⁹F NMR (377 MHz, CDCl₃, 298 K) δ : -129.8 (br s, *o*-C₆F₅), -133.0 (br s, *o*-C₆F₅), -153.4 (t, ³*J*_{*FF*} = 19 Hz, 1F, *p*-C₆F₅), -153.8 (t, ³*J*_{*FF*} = 18 Hz, 1F, *p*-C₆F₅), -154.7 (t, ³*J*_{*FF*} = 20 Hz, 1F, *p*-C₆F₅), -156.4 (t, ³*J*_{*FF*} = 19 Hz, 1F, *p*-C₆F₅), -160.4 (m, 3F, *m*-C₆F₅), -161.8 (m, 5F, *m*-C₆F₅).

Figure S 15. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound 6.

Figure S 17. $^{\rm 13}C\{^{\rm 1}H\}$ NMR (126 MHz, CDCl_3, 298 K) spectrum of compound 6.

Figure S 18. ¹⁹F NMR (377 MHz, CDCl₃, 298 K) spectrum of compound 6.

1.6 Spectra of Me₃SiCH(B(C₆F₅)₂)CH₂(B(C₆F₅)(NH₂)(NH)C₆H₄, 7

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.16 (m, 3H, Ar*H*), 6.91 (m, 1H, Ar*H*), 6.43 (br s, 1H, N*H*), 6.09 (br d, ${}^{2}J_{HH}$ = 13 Hz, 1H, NH₂), 5.32 (br d, ${}^{2}J_{HH}$ = 13 Hz, 1H, NH₂), 1.42 (br s, 1H, C*H*), 1.11 (br s, 2H, CH₂), -0.25 (s, 9H, Si-CH₃).

¹¹B NMR (128 MHz, CDCl₃, 298 K) δ: 8.8 (br s), 2.9 (br s).

¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ: 142.1 (s, Ar*C*), 130.4 (s, Ar*C*), 128.6 (s, Ar*C*), 127.7 (s, Ar*C*), 123.2 (s, Ar*C*), 122.0 (s, Ar*C*), 19.7 (br, *CH*₂), 19.3 (br, *CH*), -1.3 (Si-*C*H₃).

¹⁹F NMR (377 MHz, CDCl₃, 298 K) δ: -125.1 (br, 1F, *o*-C₆F₅), -125.8 (br, 1F, *o*-C₆F₅), -132.5 (br, 1F, *o*-C₆F₅), -134.5 (br, 2F, *o*-C₆F₅), -136.4 (br, 1F, *o*-C₆F₅), -153.8 (br m, 1F, *p*-C₆F₅), -156.9 (br m, 1F, *p*-C₆F₅), -158.7 (br m, 1F, *p*-C₆F₅), -160.9 (br m, 2F, *m*-C₆F₅), -163.4 (br m, 4F, *m*-C₆F₅).

Figure S 19. ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **7**.

Figure S 21. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **7**.

Figure S 22. ¹⁹F NMR (377 MHz, CDCl₃, 298 K) spectrum of compound 7.

1.7 Spectra of PhCH₂CH(B(C₆F₅)₂(NH₂))₂)·THF, 8

8-THF:

¹H NMR (400 MHz, CDCl₃, 298 K) δ : 7.87 (br, 2H, NH₂), 7.19 (br, 2H, NH₂), 7.06 (m, 3H, H_{Ar}), 6.86 (d, ³J_{HH} = 6.4 Hz, 2H, H_{Ar}), 3.73 (t, ³J_{HH} = 6.3 Hz, 4H, THF), 2.81 (t, ³J_{HH} = 7.2 Hz, 1H, HC(B(C₆F₅)₂)₂), 2.45 (d, ³J_{HH} = 7.1 Hz, 2H, PhCH₂), 1.92 (m, 4H, THF).

¹¹B NMR (128 MHz, CDCl₃, 298 K) δ: 2.3.

¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K) δ: 148.2 (dm, ${}^{1}J_{CF} = ~242$ Hz), 146.9 (dm, ${}^{1}J_{CF} = ~244$ Hz), 143.1 (*i*-C_{Ar}), 141.2 (dm, ${}^{1}J_{CF} = ~244$ Hz), 136.0 (dm, ${}^{1}J_{CF} = ~259$ Hz), 128.0 (*o*/*m*-C_{Ar}), 127.8 (*o*/*m*-C_{Ar}), 125.7 (*p*-C_{Ar}), 69.2 (OCH₂CH₂), 38.0 (CH(B(C₆F₅)₂)₂), 25.7 (OCH₂CH₂), 20.0 (PhCH₂).

¹⁹F NMR (377 MHz, CDCl₃, 298 K) δ: -133.8 (br, 4F, *o*-C₆F₅), -155.2 (t, ³J_{FF} = 20 Hz, *p*-C₆F₅), -156.0 (t, ³J_{FF} = 20 Hz, *p*-C₆F₅), -161.9 (br m, 4F, *m*-C₆F₅).

 1 H, 13 C gHSQC (400 MHz / 101 MHz, CDCl₃, 298 K) δ 1 H / δ 13 C: 7.06/ 127.9, 6.88/ 127.7, 3.78/ 69.0, 2.50/ 37.8, 1.94/25.4.

A single crystal sample of compound **8** without coordinated THF was isolated and the NMR is included here. However, this did not seem reproducible on bulk scale. **8**:

¹H NMR (400 MHz, CDCl₃, 298 K) δ: 6.98 (m, 3H, H_{Ar}), 6.87 (br, 2H, NH₂), 6.74 (br, 2H, NH₂), 6.67 – 6.60 (m, 2H, H_{Ar}), 2.83 (t, ³J_{HH} = 7.0 Hz, 1H, $HC(B(C_6F_5)_2)_2$), 2.51 (d, ³J_{HH} = 6.9 Hz, 2H, PhCH₂).

¹¹B NMR (128 MHz, CDCl₃, 298 K) δ: 3.8.

¹⁹F NMR (377 MHz, CDCl₃, 298 K) δ: -134.0 (br, 4F, *o*-C₆F₅), -154.4 (t, ³J_{FF} = 20 Hz, *p*-C₆F₅), -155.1 (t, ³J_{FF} = 20 Hz, *p*-C₆F₅), -161.2 (br m, 4F, *m*-C₆F₅).

Figure S 24. ¹¹B NMR (128 MHz, CDCl₃, 298 K) spectrum of 8·THF.

S21

Figure S 27. ¹⁹F NMR (377 MHz, CDCl₃, 298 K) spectrum of 8·THF.

 $\begin{array}{c} -120 \ -122 \ -124 \ -126 \ -128 \ -130 \ -132 \ -134 \ -136 \ -138 \ -140 \ -142 \ -144 \ -146 \ -148 \ -150 \ -152 \ -154 \ -156 \ -158 \ -160 \ -162 \ -164 \ -166 \ -168 \ -170 \ \\ \hline \delta \ (ppm) \end{array}$ Figure S 28. Variable-temperature ¹⁹F NMR (564 MHz, C₆D₅Br, 298-378 K) spectra of 8-THF.

Figure S 31. ¹⁹F NMR (377 MHz, CDCl₃, 298 K) spectrum of compound 8.

1.8 Generation of PhCH₂CH(B(C₆F₅)₂NH₂)(B(C₆F₅)NH)·THF, 9

in-situ NMR Analysis

¹H NMR (400 MHz, CDCl₃, 298 K, *partial*) δ : 7.06 (m, 3H, *H*_{Ar}), 6.92 (m, 1H, C₆F₅*H*), 6.78 (m, 2H, *H*_{Ar}), 6.44 (br, 2H, N*H*), 3.71 (m, 2H, THF), 2.87 (dd, ³*J*_{HH} = 13.4, 6.0 Hz, 1H, PhC*H*₂), 2.54 (d, ³*J*_{HH} = 8.1 Hz, 1H, *H*C(B(C-₆F₅)₂)₂), 2.43 (dd, ³*J*_{HH} = 13.3, 8.2 Hz, 1H, PhC*H*₂), 1.86 (m, 2H, THF).

¹¹B NMR (128 MHz, CDCl₃, 298 K) δ: 45.2 (B¹), -0.1 (B²).

¹⁹F NMR (377 MHz, CDCl₃, 298 K) δ : -129.5 (br, 2F, B¹ *o*-C₆F₅), -133.8 (br, 2F, B² *o*-C₆F₅), -134.7 (br, 2F, B² *o*-C₆F₅), -138.4 (m, 2F, *o*-C₆F₅), -149.0 (br, 1F, B¹ *p*-C₆F₅), -153.3 (t, ³*J*_{FF} = 20 Hz, 1F, *p*-C₆F₅), -156.0 (t, ³*J*_{FF} = 20 Hz, 1F, B² *p*-C₆F₅), -157.2 (t, ³*J*_{FF} = 20 Hz, 1F, B² *p*-C₆F₅), -161.4 (m, , 2F, B¹ *m*-C₆F₅), -161.7 (m, 2F, *p*-C₆F₅), -162.4 (m, 4F, B² *m*-C₆F₅).

Figure S 32. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of the protonolysis of BCBN₂H₄·THF 8 with *t*Bu₃P.

Figure S 34. ¹⁹F NMR (377 MHz, CDCl₃, 298 K) spectrum the protonolysis of BCBN₂H₄·THF 8 with *t*Bu₃P.

1.9 Spectra of Me₃SiCH(B(C₆F₅)₂)CHB(C₆F₅)(N₂H₃)·THF, 10

¹H NMR (400 MHz, C₆D₆, 298 K) δ: 6.05 (br s, 1H, N*H*), 5.21 (d, ${}^{2}J_{HH}$ = 12 Hz, 1H, N*H*), 4.78 (d, ${}^{3}J_{HH}$ = 5 Hz, 1H, N*H*), 3.63 (m, 4H, O-C*H*₂), 2.03 (dd, ${}^{2}J_{HH}$ = 15 Hz, ${}^{3}J_{HH}$ = 8 Hz, 1H, C*H*₂), 1.40 (m, 4H, O-CH₂-C*H*₂), 1.05 (dd, ${}^{3}J_{HH}$ = 10 Hz, ${}^{3}J_{HH}$ = 8 Hz, 1H, C*H*), 0.58 (dd, ${}^{2}J_{HH}$ = 15 Hz, ${}^{3}J_{HH}$ = 10 Hz, 1H, C*H*₂), -0.14 (s, 9H, Si-C*H*₃).

¹¹B NMR (128 MHz, CDCl₃, 298 K) δ: 44.0 (br s, *B*(C₆F₅)), -4.4 (br s, *B*(C₆F₅)₂).

¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 148.7 (d, ²*J*_{CF} = 236 Hz, *C*₆F₅), 147.5 (d, ²*J*_{CF} = 242 Hz, *C*₆F₅), 146.3 (d, ²*J*_{CF} = 247 Hz, *C*₆F₅), 141.8 (d, ²*J*_{CF} = 247 Hz, *C*₆F₅), 139.8 (d, ²*J*_{CF} = 253 Hz, *C*₆F₅), 137.4 (d, ²*J*_{CF} = 247 Hz, *C*₆F₅), 118.5, (br s, *i*-C₆F₅), 116.4 (br s, *i*-C₆F₅), 110.9 (br s, *i*-C₆F₅), 68.2 (s, O-CH₂), 25.7 (s, O-CH₂-CH₂), 18.7 (br s, *C*H₂), 15.9 (br s, *C*H), -1.5 (s, Si-CH₃).

¹⁹F NMR (377 MHz, CDCl₃, 298 K) δ : -132.4 (m, 2F, *o*-C₆*F*₅), -134.9 (br d, ³*J*_{FF} = 23 Hz, 2F, *o*-C₆*F*₅), -136.4 (br s, 2F, *o*-C₆*F*₅), -151.8 (t, ³*J*_{FF} = 19 Hz, 1F, *p*-C₆*F*₅), -156.8 (t, ³*J*_{FF} = 19 Hz, 1F, *p*-C₆*F*₅), -156.9 (t, ³*J*_{FF} = 19 Hz, 1F, *p*-C₆*F*₅), -160.7 (m, 2F, *m*-C₆*F*₅), -162.3 (m, 2F, *m*-C₆*F*₅), -162.8 (m, 2F, *m*-C₆*F*₅).

HRMS (DART- ionization, m/z): Calcd. for C₂₃H₁₁B₂N₂F₁₅Si⁻ ([M-H]⁻): 653.0878; Found: 653.0889.

Figure S 37. ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of **10**.

Figure S 38. ¹⁹F NMR (377 MHz, CDCl₃, 298 K) spectrum of **10**.

1.10 References

- Parks, D. J.; Piers, W. E.; Yap, G. P. A. Synthesis, Properties, and Hydroboration Activity of the Highly Electrophilic Borane Bis(Pentafluorophenyl)Borane, HB(C6F5)2. Organometallics 1998, 17 (25), 5492– 5503.
- (2) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* 2010, 29 (9), 2176–2179.
- (3) Parks, D. J.; von H. Spence, R. E.; Piers, W. E. Bis(Pentafluorophenyl)Borane: Synthesis, Properties, and Hydroboration Chemistry of a Highly Electrophilic Borane Reagent. *Angew. Chem. Int. Ed.* **1995**, *34* (7), 809–811.
- (4) Liu, Y.-L.; Kehr, G.; Daniliuc, C. G.; Erker, G. Geminal Bis-Borane Formation by Borane Lewis Acid Induced Cyclopropyl Rearrangement and Its Frustrated Lewis Pair Reaction with Carbon Dioxide. *Chem. Sci.* **2017**, *8* (2), 1097–1104.