Supporting Information

Surface Passivation Strategies for CsPbBr₃ Quantum Dots Aiming at Nonradiative Suppression and Electroluminescence Light-Emitting Diodes Enhancement

Weiwei Chen^a, Lin Hu^{b*}, Yi Wang^a, Lei Huang^a, Zhen Wang^{a*}, Xiaosheng

Tang^{a*}

^aCollege of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, 400065, People's Republic of China

^bChongqing Hongyu Precision Industry Group Co., Ltd, 400799, People's Republic of

China

E-mail: 17774904172@163.com, wangzhen@cqupt.edu.cn, xstang@cqupt.edu.cn,

Received xxxxxx

Accepted for publication xxxxxx

Published xxxxxx

Figure S1. Display the digital images of the respective CsPbBr₃ QDs films with/without PEABr treatment under UV illumination.

Figure S2. Change of brightness of CsPbBr₃ QDs films with/without PEABr treatment after stored three weeks under ambient environment.

Samples	$\tau_1(\%)$	A ₁ (%)	$\tau_2(\%)$	$A_2(ns)$	$\tau_{avg}(ns)$
0	5.2	55.4	25.3	44.6	21.21
2	6.2	39.2	29.8	60.8	27
3	6.9	33.3	31.4	66.7	28.98
5	10.8	15.7	47.2	84.3	45.71
7	7.7	25.6	33.9	74.4	32

Table S1. The best fit parameters of PL decay profiles for the CsPbBr₃ QD films measured at corresponding emission peak energies.

Table S2. The radiative rate constant (k_r) and non-radiative rate constant (k_{nr}) of CsPbBr₃ QDs with different PEABr concentrations. $k_r = PLQY/\tau$, $k_{nr} = (1-PLQY)/\tau$

Samples	PLQY	Average Lifetime	k _r	k _{nr}
	(%)	(τ, ns)	(ns ⁻¹)	(ns ⁻¹)
0	21.9	21.21	0.01	0.037
2	31.2	27	0.012	0.025
3	40.8	28.98	0.014	0.02
5	78.6	45.71	0.017	0.005
7	47.7	32	0.015	0.016

Figure. S3 Survey XPS spectra of pristine and PEABr-treated CsPbBr₃ QDs.

Figure. S4 Deconvolution of (a) Cs 3d, (b) Pb 4f and (c) Br 3d spectra from PEABr untreated (top) and treated (down) QDs.

Figure S5. The photograph of CsPbBr₃ QDs solution under ambient light.

Figure S6. EL spectra of 5 wt% PEABr treated CsPbBr₃ QDs based QLED device under different driving voltage. Inset: emission image of the device with an emitting area of 3 mm×3 mm at 5.0 V.

Figure S7. CIE coordinates of the PEABr treated device under an applied voltage of 5 V.

		_			
Method	Luminance	CE(ad A-1)	Max EQE	References	
	(cd m ⁻²)	$CE(Cd A^{-1})$	(%)		
Hot-injection	13770	14.54	4.59	1	
Hot-injection	12807	23.79	6.85	2	
Hot-injection	12650	13.43	4.33	3	
LARP	14035	32.69	9.67	This work	

 Table S3 Summary of device performance of various CsPbBr₃ QLEDs prepared with PEABr passivation.

References

1. G. Li, J. Huang, H. Zhu, Y. Li, J. Tang, Y. Jiang, Chem. Mater. 2018, 30, 6099.

2. S. He, N. Kumar, H. B. Lee, K. Ko, Y. Jung, J. I. Kim, S. Bae, J. Lee, J. Kang, *Chem. Eng. J.* 2021, **425**, 130678.

3. G. Li, J. Huang, Y. Li, J. Tang, Y. Jiang, Nano Res. 2019, 12, 109.