Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting information (ESI)

Table of Contents						
SI. No	Description	Page.No				
	Characterization	S4				
Figure S1	Crystal structure of Ba2Mg2TeB2O10 drawn from the Rietveld refinement	S5				
	data.					
Figure S2	SEM-EDX spectra of $Ba_2(Mg_{2-x}M_x)TeB_2O_{10}$ (M = Zn, Co, Ni, Fe, Cu) and	S6-S8				
	$(Ba_{0.5}Pb_{1.5})(Mg_{2-x}M_x)TeB_2O_{10}$ (M = Co, Ni, Cu).					
Table S1.	Nuclear site group analysis for each atom in $A_2Mg_2TeB_2O_{10}$ (A=Ba/Pb).	S9				
Table S2.	The observed Raman vibrational bands correspond to BaO ₁₁ , MgO ₆ , MO ₆	S10-				
	$(M = Zn, Co, Ni, Cu, Fe, In), TeO_6, BO_3 polyhedra.$	S11				
Figure S3.	Raman spectra of (a) $Ba_2(Mg_{2-x}M_x)TeB_2O_{10}$ (M=Zn, Ni, Cu, Fe) and (b)	S12				
	$(Ba_{0.5}Pb_{1.5})(Mg_{2-x}M_x)TeB_2O_{10}$ (M= Co, Ni, Cu).					
Figure S4.	Optical absorption spectra for the prepared white-colored telluroborates.	S13				
Figure S5.	Optical absorption spectra for the Ba ₂ (Mg _{2-x} Cu _x)TeB ₂ O ₁₀ (0 \leq x \leq 0.5).	S13				
Figure S6.	Optical absorption spectra for the Ba ₂ (Mg _{2-x} Fe _x)TeB ₂ O ₁₀ (0 \leq x \leq 0.5).	S14				
Figure S7.	Optical absorption spectra for the $(Ba_{0.5}Pb_{1.5})(Mg_{2-x}Ni_x)TeB_2O_{10.}$ (0< x \leq	S14				
	0.75).					
Figure S8.	Optical absorption spectra for the $(Ba_{0.5}Pb_{1.5})(Mg_{2-x}Cu_x)TeB_2O_{10}$ (0 <x<< td=""><td>S15</td></x<<>	S15				
	0.25).					
Table S3.	Colors of $Ba_2(Mg_{2-x}M^{II}_x)TeB_2O_{10}$ (M ^{II} = Fe, Co, Ni, and Cu) and	S16				
	$(Ba_{0.5}Pb_{1.5})(Mg_{2-x}M^{II}_{x})TeB_2O_{10}$ (M ^{II} = Co, Ni, and Cu) under Daylight.					
Figure S9.	NIR reflectivity of the prepared white-colored telluroborates.	S17				
Figure S10.	PXRD pattern for acid and hot water stability of Ba ₂ (MgCo)TeB ₂ O ₁₀ and	S18				
	$(Ba_{0.5}Pb_{1.5})(MgCo)TeB_2O_{10.}$					
Figure S11.	UV-Vis Spectra for acid and hot water stability of Ba ₂ (MgCo)TeB ₂ O ₁₀ and	S19				
	$(Ba_{0.5}Pb_{1.5})(MgCo)TeB_2O_{10.}$					
Figure S12.	Color of the $(Ba_{2-x}Pb_x)(MgCo)TeB_2O_{10}$ before and after acid treatment, hot	S20				
	water stability.					
Figure S13.	Calibration of Reference electrode (Hg/HgO) electrode.	S21				
Table S4.	The comparison of (Ba _{0.5} Pb _{1.5})(MgCo)TeB ₂ O ₁₀ electrocatalyst with reported	S22				
	cobalt substituted metal oxide towards OER.					
Figure S14.	The observed equivalent circuit in the electrochemical impedance	S23				
	spectroscopy.					

Figure S15.	XPS spectra for Co 2p spectra of C_(Ba _{0.5} Pb _{1.5})(MgCo)TeB ₂ O ₁₀ for (a)	S24					
	pristine, (b) 1 st cycle (c) 500 th cycle, (d) 1000 th cycle of cyclic voltammetry						
	scan of electrocatalyst in 0.5M KOH in the faradaic region.						
Table S5.	Binding energies of Co $2p$ peaks in the XPS spectra of C_(Ba _{0.5} Pb _{1.5})(MgCo)TeB ₂ O ₁₀ .	S25					
Figure S16.	Electrochemically active surface area (ECSA) for the $C_{Ba_2}(MgCo)TeB_2O_{10}$ & $C_{Ba_{0.5}}Pb_{1.5}(MgCo)TeB_2O_{10}$.	S26					
Figure S17.	Turn over frequency calculation for $C_{Ba_{0.5}Pb_{1.5}}(MgCo)TeB_2O_{10.5}$	S27					
Figure S18.	Diagram of invert burette experimental setup.	S28					
Figure S19.	Oxygen production efficiency of C_(Ba _{0.5} Pb _{1.5})(MgCo)TeB ₂ O ₁₀ .	S29					
Figure S20.	The PXRD pattern for (a) Pristine Carbon Black, Acetylene (b)	S30					
	Electrocatalyst, (Ba _{0.5} Pb _{1.5})(MgCo)TeB ₂ O ₁₀ (c) Mixture of acetylene black						
	and electrocatalyst in glass substrate, before and after electrocatalysis.						
Table S6.	Optimised reaction condition: Screening of starting materials.	S31					
Table S7.	Optimised reaction condition: Solvent screening.	S31					
Table S8.	Control experiments for oxochlorination of vinyl arene.	S32					
Figure S21.	PXRD Pattern of $Ba_2(Mg_{1.5}Cu_{0.5})TeB_2O_{10}$ before and after photocatalysis.	S33					
Figure S22.	The proposed reaction mechanism for the photocatalytic oxidative	S34					
	halogenation of vinyl arenes.						
Table S9.	The comparison of (Ba _{0.5} Pb _{1.5})(MgCo)TeB ₂ O ₁₀ electrocatalyst with reported	S35					
	cobalt substituted metal oxide towards OER.						
Figure S23.	NMR Spectra of 2-Chloro-1-phenylethan-1-one	S36					
Figure S24.	NMR Spectra of 2-Chloro-1-(<i>p</i> -tolyl)ethan-1-one	S36					
Figure S25.	NMR Spectra of 2-Chloro-1-(4-bromophenyl)ethan-1-one	S37					
Figure S26.	NMR Spectra of 2-Chloro-1-(4-chlorophenyl)ethan-1-one	S37					
	Reference	S39					

Characterization

The diffuse reflectance data were converted to absorbance data employing the Kubelka–Munk¹ function by using the equation (1)

in which R is the reflectance, α is absorptivity, and S is the scattering factor.

The optical band gaps were calculated from Tauc plots.² The Tauc relation (2) is

where α is absorption coefficient, A is a constant called the band tailing parameter, and n is the power factor of the transition mode. The plot of $(\alpha hv)^{(1/n)}$ versus the photon energy (hv) gives a straight line in a certain region.³ The extrapolation of this straight line intercepts the (hv)-axis to give the value of the optical band gap (E_g).

The working electrode was prepared by mixing 4 mg of the catalyst along with 1 mg of carbon black dispersed in 3:1 ratio of isopropanol and water mixture and 0.04 mL of Nafion. This suspension was ultrasonicated for 1-2 h to obtain a homogeneous mixture. This gave a loading of 0.255 mg/cm² of the catalyst. All the parameters were converted to reversible hydrogen electrode (RHE) scale using the Nernst equation⁴ (equation 3). The overpotential (η) was calculated using the formula

$$E_{RHE} = E_{Hg/HgO} + E_{Hg/HgO}^{0} + 0.059*pH \dots (3)$$

$$\eta = E_{RHE} - 1.23 \dots (4)$$

Both overpotential (η) (thermodynamic parameter) and exchange current density (j_0) (kinetic parameter) of the electrochemical reaction analysed by Butler-Volmer equation (equation 5). The Tafel analysis ($log|i| vs \eta_i$), when electrochemical reaction not in equilibrium (equation 6). This Tafel plot helps to understand the kinetics of the reaction.

 $log|i| = log|i_0| + (\alpha nF/2.303RT)\eta_i$ (6)

In the above equation, η ,R,T, α ,n,F and j indicate overpotential, gas constant, temperature in K, charge-transfer coefficient, number of electrons transferred per molecule of product formed during reaction and current density respectively.-⁵

Figure S1. Crystal structure of $Ba_2Mg_2TeB_2O_{10}$ drawn from the Rietveld refinement data.

Ba₂Mg₂TeB₂O₁₀

Elements	Atomic weight (u)	Weight percentage (calculated)	Weight percentage (observed)	Atomic percentage (calculated)	Atomic percentage (observed)	Weight percentage /Atomic weight
Ba <mark>L</mark>	137.327	43.425	64.07	11.765	34.60	0.3162
Mg <mark>K</mark>	24.305	7.685	02.71	11.765	08.28	0.3162
Te L	127.60	20.174	24.44	05.882	14.21	0.1581
B K	10.811	3.418	01.00	11.761	06.85	0.3161
O K	15.999	25.295	07.78	58.825	36.06	1.581
Total	632.476	100		100		2.6876

$Ba_{2}(Mg_{1.5}In_{0.5})(Te_{0.5}Sb_{0.5})B_{2}O_{10}$

c:\edax32\genesis\genspc.spc

Label:

Ba₂(Mg₁₂₅Zn₀₇₅)TeB₂O₁₀

c:\edax32\genesis\genspc.spc Label:

kV:15.0 Tilt:0.0 Take-off:51.2 Det:Octane Elect Plus Res:127 Amp.T:3.84 FS:2906 Lsec:60 20-Sep-2023 12:43:09

Elements	Atomic weight (u)	Weight percentage (calculated)	Weight percentage (observed)	Atomic percentage (calculated)	Atomic percentage (observed)	Weight percentage /Atomic weight
Ba <mark>L</mark>	137.327	41.400	56.06	11.767	23.62	0.30147
Mg <mark>K</mark>	24.305	4.580	02.12	07.355	05.06	0.18843
Zn <mark>L</mark>	65.380	7.390	05.00	04.412	04.43	0.11303
Te L	127.60	19.230	21.73	05.882	09.86	0.15070
B K	10.811	3.250	01.43	11.734	07.64	0.30061
O K	15.999	24.120	13.66	58.848	49.40	1.50759
Total	673.551	100		100		2.56183

Ba₂(MgCo)TeB₂O₁₀

Elements	Atomic weight (u)	Weight percentage (calculated)	Weight percentage (observed)	Atomic percentage (calculated)	Atomic percentage (observed)	Weight percentage /Atomic weight
Ba <mark>L</mark>	137.327	41.171	52.72	11.767	25.00	0.2998
⁵ Mg <mark>K</mark>	24.305	3.643	01.69	5.879	04.52	0.1498
Co <mark>K</mark>	58.933	8.834	14.30	5.879	15.80	0.1498
Te <mark>L</mark>	127.60	19.127	20.99	5.879	10.71	0.1498
B <mark>K</mark>	10.811	3.241	01.06	11.763	06.37	0.2997

$Ba_2(Mg_{1.5}Ni_{0.5})TeB_2O_{10}$

c:\edax32\genesis\gen Label: kV:15.0 Tilt:0.0 Take-off:51.2 Det:Octane Elect Plus es:127 Amp.T:3.84 FS:1136 Lsec:61 20-Sep-2023 12:16:24 20.00 32.00 keV 8.00 12.00 16.00 24.00 28.00

Elements	Atomic weight (u)	Weight percentage (calculated)	Weight percentage (observed)	Atomic percentage (calculated)	Atomic percentage (observed)	Weight percentage /Atomic weight
Ba <mark>L</mark>	137.327	42.275	50.41	11.766	19.03	0.3078
Mg <mark>K</mark>	24.305	5.611	03.36	8.822	07.15	0.2308
Ni L	58.693	4.517	11.00	2.924	09.71	0.0765
Te L	127.60	19.640	18.70	5.883	07.60	0.1539
B K	10.811	3.328	01.89	11.766	09.06	0.3078
O K	15.999	24.626	14.64	58.837	47.44	1.5392
Total	649.670	100		100		2.616

Res:127 Amp.T:3.84 FS:2502 Lsec:61 20-Sep-2023 12:11:33 0 Ba 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 Elements Atomic Weight weight Weight Weight percentage Atomic percentage (1) Could approximately (concertage) (concertage) (1) (concertage) (concertage) (1) (concertage) (concertage) (1) (concertage) (concertage) (1) (concertage) (concertage)	7:15.0 Ti	lt:0.0 Take-off	:51.2 Det:Octa	ne Elect Plus		
Cu 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 Elements Atomic Weight Weight percentage percent	s:127 Am	p.T:3.84 FS:2502	Lsec: 61 20-Sep-2	023 12:11:33		
4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 Elements Atomic Weight Weight Percentage	Ba Te	Cu			Tech South of the sec	
Elements Atomic Weight Weight Atomic Atomic V weight percentage percentage percentage percentage (cheramed) (cheramed)	4.00	8.00 12.00	16.00 20.00	24.00 28.	00 32.00	ke
(u) (carculated) (observed) (carculated) (observed) /	ements	Atomic Weight weight percent (u) (calcula	Weight tage percentage ated) (observed)	Atomic percentage (calculated)	Atomic percentage (observed)	Weight percentag /Atomic weight

 $Ba_2(Mg_{1.5}Cu_{0.5})TeB_2O_{10}$

c:\edax32\genesis\genspc.spc

Label:

Elements	Atomic weight (u)	Weight percentage (calculated)	Weight percentage (observed)	Atomic percentage (calculated)	Atomic percentage (observed)	Weight percentage /Atomic weight
Ba <mark>L</mark>	137.327	42.118	53.13	11.762	21.65	0.3066
Mg <mark>K</mark>	24.305	5.590	03.61	8.819	08.31	0.2299
Cu <mark>K</mark>	63.546	4.872	07.61	2.938	06.70	0.0766
Te <mark>L</mark>	127.60	19.567	21.00	5.881	09.21	0.1533
B K	10.811	3.315	01.73	11.762	08.96	0.3066
O K	15.999	24.537	12.91	58.835	45.16	1.5336
Total	652.096	100		100		2.6066
Te L B K O K Total	127.60 10.811 15.999 652.096	19.567 3.315 24.537 100	21.00 01.73 12.91	5.881 11.762 58.835 100	09.21 08.96 45.16	0.1533 0.3066 1.5336 2.6066

32.00

Atomic

05.10

11.09 12.95

09.04

06.22

percentage

(observed)

keV

Weight percentage

/Atomic weight

0.0678 0.2034

0.2712

0.1356

0.2712

Ba₂(Mg_{1.5}Fe_{0.5})TeB₂O₁₀

O K

15.999 24.680

06.83

58.824

33.65

c:\edax Label: kV:15.0	32\genesis Tilt:0.0	Ba ₂ (Mg	2 Det:Octa)TeB ₂ O	10 1s		c:\edax Label: kV:15.0	(32\genesis\ 0 Tilt:0.0 T	Ba _{0.5} Pb	1.5)Mg2	TeB ₂ O	10
Q Mg H	Fe .00 8.0	0 12.00 1	6.00 20.00	24.00 2	8.00 32.00	keV	G Pb Mg	Ba 1.00 8.00	12.00 16	.00 20.00	24.00 28	. 00
Elements	Atomic weight (u)	Weight percentage (calculated)	Weight percentage (observed)	Atomic percentage (calculated)	Atomic percentage (observed)	Weight percentage /Atomic weight	Elemen	ts Atomic weight (u)	Weight percentage (calculated)	Weight percentage (observed)	Atomic percentage (calculated)	A F (0
Ba <mark>L</mark>	137.327	42.368	62.70	11.764	35.98	0.30851	Ba L	137.327	9.313	12.92	02.940	10
Mg K	24.305	05.624	01.83	08.823	05.92	0.23139	Pb M	207.2	42.154	42.36	08.820	
Fe K	55.845	04.307	04.02	02.940	05.67	0.07712	Mg K	24.305	6.593	05.81	11.761	
Te L	127.60	19.683	24.09	05.882	14.88	0.15425	Tel	127.60	17 306	21.27	05.88	
		00.005	0.54	11 702	02.00	0.20040		127.00	17.500	-1.2/	00.00	<u> </u>

1.54259

(Ba_{0.5}Pb_{1.5})(MgCo)TeB₂O₁₀

(Ba_{0.5}Pb_{1.5})(Mg_{1.25}Ni_{0.75})TeB₂O₁₀

Figure S2. SEM-EDX spectra of $Ba_2(Mg_{2-x}M_x)TeB_2O_{10}$ (M=Zn, Co, Ni, Fe, Cu) and $(Ba_{0.5}Pb_{1.5})(Mg_{2-x}M_x)TeB_2O_{10}$ (M= Co, Ni, Cu).

SI.	Atom	Wyckoff	Transformation in irreducible representations							
No		position	Ag	B _{1g}	B _{2g}	B _{3g}	Au	B _{1u}	B _{2u}	B _{3u}
1	Ba1/Pb1	8 <i>f</i>	2	1	1	2	1	2	2	1
2	Mg1	8e	1	2	1	2	1	2	1	2
3	Te1	4 <i>a</i>	0	0	0	0	1	2	2	1
4	B1	8 <i>f</i>	2	1	1	2	1	2	2	1
5	01	8f	2	1	1	2	1	2	2	1
6	02	16g	3	3	3	3	3	3	3	3
7	03	8 <i>f</i>	2	1	1	2	1	2	2	1
8	04	8 <i>f</i>	2	1	1	2	1	2	2	1

Table S1. Nuclear site group analysis for each atom in A₂Mg₂TeB₂O₁₀ (A=Ba/Pb)

From the reported X-ray diffraction data, the structure of $A_2Mg_2TeB_2O_{10}$ (A=Ba/Pb) consists of Ba1/Pb1, B1, O1, O3 and O4 atoms occupying 8*f* Wyckoff position, 8*e* Wyckoff position is occupied by Mg1, 4*a* Wyckoff position is occupied by Te1 and 16*g* Wyckoff position is occupied by O2 atom. The nuclear site group analysis described by Rousseau *et al* for the space group⁶ *Cmca*, it gives the point group symmetry for all Wyckoff positions and the transformation in the corresponding irreducible representations. The transformations obtained in irreducible representations with the Wyckoff position of atoms are tabulated in Table <u>S1</u>. The total transformations are as follows:

$$\Gamma (102) = 14 A_g + 10 A_u + 10 B_{1g} + 17 B_{1u} + 9 B_{2g} + 16 B_{2u} + 15 B_{3g} + 11 B_{3u}$$

$$\Gamma_{Raman} (48) = 14A_g + 10B_{1g} + 9B_{2g} + 15B_{3g};$$

$$\Gamma_{IR} (41) = 16B_{1u} + 15B_{2u} + 10B_{3u};$$

Acoustic = $B_{1u} + B_{2u} + B_{3u};$
Silent = $10A_u$.

Some of the expected Raman bands were not observed may be due to very less intensity and overlapping with modes due to accidental degeneracy.⁷ The molecular polarizability could be obtained by the Shannon's additive rule.⁸

$$\alpha(Ba_{2-x}Pb_x)Mg_2TeB_2O_{10} = (2-x)\alpha(Ba^{2+}) + (x)\alpha(Pb^{2+}) + (2)\alpha(Mg^{2+}) + \alpha(Te^{6+}) + 2\alpha(B^{3+}) + 10\alpha(O^{2-})$$

The ion dielectric polarizabilities value for α (Ba²⁺) = 6.40 Å³; α (Pb²⁺) = 6.58 Å³; α (Te⁶⁺) =

5.23 Å³;
$$\alpha$$
 (Mg²⁺) = 1.32 Å³; α (B³⁺) = 0.05 Å³; α (O²⁻) = 2.01 Å³.

Table S2. The observed Raman vibrational bands correspond to BaO_{11} , MgO_6 , MO_6 (M – Zn, Co, Ni, Cu, Fe, In), TeO₆, BO₃ polyhedra.

Name of the compound		Ba-O bond	Pb-O bond
		Vibration	Vibration
		(cm ⁻¹)	(cm^{-1})
$Ba_2Mg_2TeB_2O_{10}$		764	
$Ba_2(Mg_{1.25}Zn_{0.75})TeB_2O_{10}$		769	
$Ba_2(MgCo)TeB_2O_{10}$	$Ba^{2+}O_{11}$	770	
$Ba_2(Mg_{1.5}Ni_{0.5})TeB_2O_{10}$		768	
$Ba_2(Mg_{1.5}Cu_{0.5})TeB_2O_{10}$		767	
$Ba_2(Mg_{1.5}Fe_{0.5})TeB_2O_{10}$		724	
$Ba_2(Mg_{1.5}In_{0.5})(Te_{0.5}Sb_{0.5})B_2O_{10}$		763	
$(Ba_{0.5}Pb_{1.5})Mg_2TeB_2O_{10}$	$Pb^{2+}O_5$	144	293
$(Ba_{0.5}Pb_{1.5})(MgCo)TeB_2O_{10}$	&	140	286
$(Ba_{0.5}Pb_{1.5})(Mg_{1.25}Ni_{0.75})TeB_2O_{10}$	$Ba^{2+}O_5$	145	291
$(Ba_{0.5}Pb_{1.5})(Mg_{1.75}Cu_{0.25})TeB_2O_{10}$		144	290

Name of the compound		Symmetric	Asymmetric	Bending
		stretching	stretching	mode
		(cm ⁻¹)	(cm^{-1})	(cm^{-1})
$Ba_2Mg_2TeB_2O_{10}$		461	679	222
$Ba_2(Mg_{1.25}Zn_{0.75})TeB_2O_{10}$		460	678	217
$Ba_2(MgCo)TeB_2O_{10}$		458	673	212
$Ba_2(Mg_{1.5}Ni_{0.5})TeB_2O_{10}$		461	678	211
$Ba_2(Mg_{1.5}Cu_{0.5})TeB_2O_{10}$		460	679	219
$Ba_2(Mg_{1.5}Fe_{0.5})TeB_2O_{10}$	$Mg^{2+}O_6$	458	678	216
$Ba_2(Mg_{1.5}In_{0.5})(Te_{0.5}Sb_{0.5})B_2O_{10}$		456	677	217
$(Ba_{0.5}Pb_{1.5})Mg_2TeB_2O_{10}$		451	683	220
$(Ba_{0.5}Pb_{1.5})(MgCo)TeB_2O_{10}$		440	670	204
$(Ba_{0.5}Pb_{1.5})(Mg_{1.25}Ni_{0.75})TeB_2O_{10}$		448	680	219
$(Ba_{0.5}Pb_{1.5})(Mg_{1.75}Cu_{0.25})TeB_2O_{10}$		449	682	217

Name of the compound		Symmetric	Asymmetric	Bending
		stretching	stretching	mode
		(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
$Ba_2(Mg_{1.25}Zn_{0.75})TeB_2O_{10}$	$Zn^{2+}O_6$	398	239	344
$Ba_2(MgCo)TeB_2O_{10}$	Co ²⁺ O ₆	402	241	345
$(Ba_{0.5}Pb_{1.5})(MgCo)TeB_2O_{10}$	Co ²⁺ O ₆	411	243	357
$Ba_2(Mg_{1.5}Ni_{0.5})TeB_2O_{10}$	Ni ²⁺ O ₆	400	241	348
$(Ba_{0.5}Pb_{1.5})(Mg_{1.25}Ni_{0.75})TeB_2O_{10}$	Ni ²⁺ O ₆	408	243	338

$Ba_2(Mg_{1.5}Cu_{0.5})TeB_2O_{10}$	Cu ²⁺ O ₆	398	220	307
$(Ba_{0.5}Pb_{1.5})(Mg_{1.75}Cu_{0.25})TeB_2O_{10}$	Cu ²⁺ O ₆	414	244	335
$Ba_2(Mg_{1.5}Fe_{0.5})TeB_2O_{10}$	Fe ²⁺ O ₆	524	345	303
$Ba_2(Mg_{1.5}In_{0.5})(Te_{0.5}Sb_{0.5})B_2O_{10}$	In ³⁺ O ₆	568	344	301

Figure S3. Raman spectra of (a) $Ba_2(Mg_{2-x}M_x)TeB_2O_{10}$ (M=Zn, Ni, Cu, Fe) and (b) $(Ba_{0.5}Pb_{1.5})(Mg_{2-x}M_x)TeB_2O_{10}$ (M= Co, Ni, Cu).

Figure S4. Optical absorption spectra for the prepared white-colored telluroborates.

$Ba_2(Mg_{1.5}Cu_{0.5}) IeB_2O_{10}$ 1.91 eV
--

Figure S5. Optical absorption spectra for the $Ba_2(Mg_{2-x}Cu_x)TeB_2O_{10}$ (0 < x ≤ 0.5).

Figure S6. Optical absorption spectra for the $Ba_2(Mg_{2-x}Fe_x)TeB_2O_{10}$ ($0 \le x \le 0.5$).

Figure S7. Optical absorption spectra for the $(Ba_{0.5}Pb_{1.5})(Mg_{2-x}Ni_x)TeB_2O_{10}$ (0 < x ≤ 0.75).

Figure S8. Optical absorption spectra for the $(Ba_{0.5}Pb_{1.5})(Mg_{2-x}Cu_x)TeB_2O_{10}$ (0 < x ≤ 0.25).

SI. No	Compounds	Ligand- field transitions (nm/eV)	Assignment*		Color
1	$Ba_2(Mg_{1.5}Fe_{0.5})TeB_2O_{10}$	551/2.25	Fe ²⁺ (3d ⁶)	${}^{5}\mathrm{T}_{2\mathrm{g}} \longrightarrow {}^{5}\mathrm{E}_{\mathrm{g}}$	
2		546/2.27	$C^{2+(2,17)}$	${}^{4}T_{1g} \longrightarrow {}^{4}T_{1g}({}^{4}P)$	
2	$Ba_2(MgCo) IeB_2O_{10}$	742/1.67	Co ² '(3d')	${}^{4}T_{1g} \longrightarrow {}^{4}A_{2g}({}^{4}F)$	
2		439/2.82	NI:2+(2.18)	$^{3}A_{2g}(^{3}F) \longrightarrow ^{3}T_{1g}(^{3}P)$	
5	$Ba_2(Mg_{1.5}Ni_{0.5}) TeB_2O_{10}$	$Ba_{2}(Mg_{1.5}Ni_{0.5}) IeB_{2}O_{10}$ 815/1.52 $Ni^{2+}(3d^{\circ})$		${}^{3}A_{2g}({}^{3}F) \longrightarrow {}^{3}T_{1g}({}^{3}F)$	
4	$Ba_2(Mg_{1.5}Cu_{0.5})TeB_2O_{10}$	708/1.75	Cu ²⁺ (3d ⁹)	$^{2}E_{g} \rightarrow ^{2}T_{2g}$	
5	$(\mathbf{D}_{\alpha}, \mathbf{D}_{\beta}) = \mathcal{N}(\mathbf{M}_{\alpha} \mathbf{C}_{\alpha}) \mathbf{T}_{\alpha} \mathbf{D}_{\alpha} \mathbf{O}$	541/2.29	$C = 2^{2+}(2 + 1^{7})$	${}^{4}T_{1g} \longrightarrow {}^{4}T_{1g}({}^{4}P)$	
5	$(Ba_{0.5}Po_{1.5})(MgC0)PB_2O_{10}$	689/1.80	C0- (3d ⁻)	${}^{4}T_{1g} \longrightarrow {}^{4}A_{2g}({}^{4}F)$	
6	(Pa Ph)(Mg Ni)TaP O	426/2.91	N;2+(2,48)	$^{3}A_{2g}(^{3}F) \longrightarrow ^{3}T_{1g}(^{3}P)$	
0	$(\mathbf{Ba}_{0.5}\mathbf{F}\mathbf{U}_{1.5})(\mathbf{WI}\mathbf{g}_{1.25}\mathbf{WI}_{0.75})\mathbf{F}\mathbf{C}\mathbf{B}_2\mathbf{U}_{10}$	789/1.57	INI-"(3d°)	$^{3}A_{2g}(^{3}F) \longrightarrow ^{3}T_{1g}(^{3}F)$	
7	$(Ba_{0.5}Pb_{1.5})(Mg_{1.75}Cu_{0.25})TeB_2O_{10}$	700/1.77	Cu ²⁺ (3d ⁹)	$^{2}E_{g} \rightarrow ^{2}T_{2g}$	

Table S3. Colors of $Ba_2(Mg_{2-x}M^{II}_x)TeB_2O_{10}$ ($M^{II} = Fe$, Co, Ni, and Cu) and ($Ba_{0.5}Pb_{1.5}$)($Mg_{2-x}M^{II}_x$)

 $_{x}M^{II}_{x}$)TeB₂O₁₀ (M^{II} = Co, Ni, and Cu) under Daylight.

*Ligand-field transitions, the assignments have been made for octahedral $M^{II}O_6$ chromophores given in refs $^{9-13}$

Figure S9. NIR reflectivity of the prepared white-colored telluroborates.

Figure S11. UV-Vis Spectra for acid and hot water stability of $Ba_2(MgCo)TeB_2O_{10}$ and $(Ba_{0.5}Pb_{1.5})(MgCo)TeB_2O_{10}$ after acid and hot water treatment.

Figure S12. Color of the (Ba_{2-x}Pb_x)(MgCo)TeB₂O₁₀ before and after acid treatment, hot water stability.

Figure S13. Calibration of mercury/mercury oxide (Hg/HgO) electrode with respect to reversible hydrogen electrode (RHE) in 0.5 M KOH at 10 mV S⁻¹.

Therefore, we have for 0.5 M KOH:

$\mathbf{E}_{\mathbf{RHE}} = \mathbf{E}_{\mathbf{Hg/HgO}} + 0.916 \mathbf{V}$

The reference electrode (Hg/HgO) used in alkaline medium were calibrated with respect to reversible hydrogen electrode using large area Pt foil as a working and counter electrode. High purity hydrogen gas was purged in the respective solutions for at least 45 min before the experiments and there after a constant overhead purge was maintained during the measurements.¹⁴

SI No	Catalyst for OER	Electrolyte Medium	Substrate	Over potential $\eta[V]$ @ 10 mA*cm ⁻²	Tafel slope [mV dec ⁻¹]	Turn over frequency (TOF) S ⁻¹	Faradaic efficiency (%)	Reference
1.	IrO ₂	1 M KOH	Glassy Carbon	0.338	47	0.01 @300 mV	100	<i>Nat. Commun.</i> 2014 , <i>5</i> , 4477.
2.	c - Co ₃ O ₄	1 M Koh	Glassy Carbon	0.440	53	0.01 @400 mV	-	ACS Appl. Energy Mater. 2020 , <i>3</i> (6), 5439–5447.
3.	NiCo ₂ O ₄	0.1 M KOH	Glassy Carbon	0.471	161	-	100	Lee, D. U.; et al., J.Mater.Chem. 2013 , 1, 4754-4762.
4.	Nanowire MnCo ₂ O ₄	1 M KOH	Carbon Cloth	0.342	115	-	-	<i>Adv. Funct.</i> <i>Mater.</i> 2022 , <i>32</i> (11), 2107179.
5.	CoFe ₂ O ₄	1 M KOH	Carbon Paper	0.477	71	0.000187 @300 mV	-	ACS Appl. Mater. Interfaces 2017 , 9, 13132.
6.	CoCr ₂ O ₄	1 M KOH	RDE Glassy Carbon	0.326	51	0.03141 @326 mV	-	Small. 2016, 12, 2866–2871.
7.	CoBO NPs FeBO NPs	1 M	Glassy	0.359	57	0.0076 @350 mV 0.0020	-	<i>Int. J. Hydrogen</i> <i>Energy.</i> 2018 , <i>43</i> ,
	CoFeBO NPs	КОН	Carbon	0.263	39	@350 mV 0.1029 @350 mV		6138–6149.
8.	$\begin{array}{c} ({\rm Ba_{0.5}Pb_{1.5}}) \\ ({\rm MgCo}){\rm TeB_2O_{10}} \end{array}$	0.5 M KOH	Glassy Carbon	0.479	73	4.673 @479 mV	96	This work

Table S4. The comparison of $(Ba_{0.5}Pb_{1.5})(MgCo)TeB_2O_{10}$ electrocatalyst with reported cobalt substituted metal oxide towards OER.

Electrocatalyst	Solution	Interfacial	Charge	Total
	resistance	contact	transfer	resistance
	$R_s(\Omega)$	resistance	resistance	(Ω)
		$R_{int}(\Omega)$	$R_{ct}(\Omega)$	
$C_{(Ba_{0.5}Pb_{1.5})(MgCo)TeB_2O_{10}}$	21.93	25.9	94.08	141.91

This equivalent electrical circuit will try to explain the OER process¹⁵

- \clubsuit The R_s (solution resistance) which has contribution from electrode and electrolyte.
- The CPE1 (constant phase angle element) & R_{int} (interfacial contact resistance) denotes internal double layer polarization and corresponding resistance of the polymeric film on the surface of the electrode.
- The CPE2 with R_{ct} (charge transfer resistance) was related to faradaic charge transfer resistance was added in the model.
- Warburg (W) element due to diffusion of electroactive ion at the electrode and electrolyte interface.

Figure S14. The observed equivalent circuit in the electrochemical impedance spectroscopy.

Figure S15. XPS spectra for Co 2p spectra of C_(Ba_{0.5}Pb_{1.5})(MgCo)TeB₂O₁₀ for (a) pristine, (b) 1st cycle (c) 500th cycle, (d) 1000th cycle of cyclic voltammetry scan of the electrocatalyst in 0.5M KOH in the faradaic region.

Table	S5.	Binding	energies	of	Co	2p	peaks	in	the	XPS	spectra	of
		<u> </u>	U U			-	1				1	

Sample Name	$Co^{3+} 2n_{2/2}$	$Co^{3+} 2n_{1/2}$	$Co^{2+} 2n_{2/2}$	$Co^{2+} 2n_{1/2}$	Satellite
2 unipro 1 (unito	$-p_{3/2}$	-P 1/2	$-P_{3/2}$	-P 1/2	~
	(ev)	(ev)	(ev)	(ev)	
Pristine			781 3	796 3	785 8/798 2
Tristine			701.5	190.5	105.0/190.2
				5060	
I I st CV			/80.9	/96.0	/8/.9//99.0
1000 nd CV	778 7	793.6	780.6	795.2	786 5/797 4
1000 CV	//0./	, , , , , , , , , , , , , , , , , , , ,	,00.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, оо. <i>эттэт</i> .т

 $C_{(Ba_{0.5}Pb_{1.5})(MgCo)TeB_2O_{10}^{16}}$

Sample Name	Co ³⁺ (%)	Co ²⁺ (%)	Co ³⁺ /Co ²⁺
1000 nd CV	06.20	39.14	0.158

The electrochemically active surface area (ECSA) calculated by the double layer capacitance.¹⁷

$$ECSA = \frac{Cdl}{Cs}$$

 C_{dl} – Double layer capacitance; Cs – Specific capacitance (40 μ F/cm²). Double layer charging current (i_c) is product of scan rate v (mV/s) and double layer capacitance. If i_c is plotted as a function of v, then slope will be C_{dl} .

Electrochemically active surface area for $(Ba_{0.5}Pb_{1.5})(MgCo)TeB_2O_{10}$ is 2.418 cm² whereas C_($Ba_{0.5}Pb_{1.5})(MgCo)TeB_2O_{10}$ is 8.383 cm².

Figure S16. Electrochemically active surface area for C_(Ba_{0.5}Pb_{1.5})(MgCo)TeB₂O₁₀

Determination of Turn Over Frequency (TOF) value from OER current¹⁸

$$TOF = (i x N_A) / (A x F x n x r)$$

i – current (A); N_A – Avogadro number (6.023 x 10²³); A – Geometrical surface area of the working electrode; F – Faraday constant (96485 C / mol); n – Number of electrons involved (n = 4 for OER); r – Surface concentration calculated from LSV redox peak method.

Determination of Surface Concentration of C_(Ba_{0.5}Pb_{1.5})(MgCo)TeB₂O₁₀ from LSV redox peak in the alkaline medium.¹⁹

Area from Co^{2+} to Co^{3+} redox peak = 5.350 x 10⁻³ V mA; Charge = 5.350 x 10⁻³ V mA / 0.01 V s⁻¹ = 5.350 x 10⁻⁴ C coulombs (q = I x t = A x s); To find number of electron: 5.350 x 10⁻⁴ C / 1.602 x 10⁻¹⁹ C = 3.339 x 10¹⁵. The value divide by the 1e⁻ transfer in the redox reaction gives, 3.339 x 10¹⁵ atoms.

The OER current of 1 mA/cm² observed at 1.560 V *vs.* RHE, 10 mA/cm² observed at 1.664 V *vs.* RHE and 40 mA/cm² observed at 1.928 V *vs.* RHE.

 $TOF_{1.56V (a) 1mA/cm}^{2} = \{(1x10^{-3}) \times (6.023x10^{23})\} / \{(1) \times (96485x (4) \times (3.339x10^{15}))\} = 0.467 \text{ s}^{-1}.$

 $TOF_{1.664V @ 10mA/cm}^2 = 4.673 \text{ s}^{-1}$. $TOF_{1.928V @ 40 mA/cm}^2 = 18.695 \text{ s}^{-1}$.

Figure S17. Turn over frequency calculation for C (Ba_{0.5}Pb_{1.5})(MgCo)TeB₂O₁₀.

Figure S18. Diagram of inverse burette experimental setup.²⁰

We were able to quantified the amount of oxygen gas evolved from alkaline oxygen evolution reaction as a function of time. The chronoamperometric experiment was carried out using H-shaped electrochemical cell as shown in figure S23, to quantify the amount of oxygen gas evolved. The carbon cloth coated with $C_{(Ba_{0.5}Pb_{1.5})}(MgCo)TeB_2O_{10}$ and the WE was kept in one compartment of H-shaped cell along with reference electrode (Hg – HgO electrode). A large area counter electrode (graphite rod) was kept in the other compartment. The quantity of oxygen gas evolved was measured using inverse burette method.

Figure S19. Oxygen production efficiency of C_(Ba_{0.5}Pb_{1.5})(MgCo)TeB₂O₁₀.

Measured vs. calculated actual oxygen production catalysed by $C_{(Ba_{0.5}Pb_{1.5})(MgCo)TeB_2O_{10}}$ after a pretreatment of 30 min. The calculated data represents the expected amount of O_2 gas assuming a quantitative faradaic yield for oxygen gas formation in alkaline medium.

Entry	Ratio of	Yield (%)	Yield (%)
-	1a:2	3a	4a
1	2:1	45	15
2	1:1	55	10
3	1:2	60	05
4	1:3	75	trace

To check the materia after electrocatalysis pattern, afte stability, before and performed PXRD electrocatalysis is

1000 cycle of cyclic voltammetry (scan rate: 10 mV/s) in the faradaic region.

Figure S20. The PXRD (a) Pristine Carbon Black, Acetylene (b) (Ba_{0.5}Pb_{1.5})(MgCo)TeB₂O₁₀ (c) Before and after electrocatalysis

Table S6. Optimised reaction condition: screening of starting materials ratio

Table S7. Optimised reaction condition: solvent screening

R Entry I mmo	+ H_{3C} CI + H_{3C} CI 2 3 mmol H_{3} CH ₃ CN (3 mL), O ₂ , RT 12 h, Visible LEDs (60) Solvent H_{3} CH ₃ CN (3 mL), O ₂ , RT 12 h, Visible LEDs (60) H_{3} CN H_{3} CN H_{3	$(x, y) = \frac{10}{10}$ $(x, y) $	$+ \underbrace{\downarrow}_{R}^{HO}$ $Yield (\%)$ $4a$	CI
1	Acetonitrile	75	trace	
2	Ethanol	49	12	
3	Methanol	45	11	
4	Isopropyl alcohol	48	08	
5	Tetrahydrofuran	10	06	
6	Dimethyl formamide	05	trace	
7	Dichloromethane	08	10	
8	1,2-Dichloroethane	10	15	
9	Dimethylacetamide	05	trace	
10	1,4-Dioxane	14	trace	
11	Water	0	0	
12	Dimethyl sulfoxide	0	0	
13	Ethyl acetate + Isopropyl alcohol (9:1)	20	05	

Table S8. Control experiments for oxochlorination of vinyl arene

Figure S21. PXRD Pattern of Ba₂(Mg_{1.5}Cu_{0.5})TeB₂O₁₀ before and after photocatalysis.

Figure S22. The proposed reaction mechanism for the photocatalytic oxidative halogenation of vinyl arenes. $^{21}\,$

Photocatalyst	Chlorine	Reaction Condition	Isolated	Ref
	Source		Yield	
Cu-C ₃ N ₄	NiCl ₂	410 nm LED, 1 mL of IPA in 9 mL of	99%	21
	·6H ₂ O	EtOAC, RT, Air, 12 h		
CuCl ₂	MgCl ₂	455 nm LED, TFA, MeCN, O ₂ or air, 36 h	76%	22
[Cu ^I (dmp) ₂]Cl	AcCl	455 nm LED, MeCN, RT, Air, 36 h	76%	23
[Cu ^{II} (dmp) ₂ Cl]Cl	AcCl	455 nm LED, MeCN, RT, Air, 36 h	74%	23
$Ba_2(Mg_{1.5}Cu_{0.5})TeB_2O_{10}$	AcCl	Visible light LED, MeCN, RT, O ₂ , 12 h	75%	This
				work

Table S9. The comparison of the literature reported catalyst for the visible light mediated oxochlorination of vinyl arenes

¹H NMR (400 MHz, CDCl₃) spectra (3a-3d)

Figure S23. NMR Spectra of 2-Chloro-1-phenylethan-1-one (3a): Yellow Solid. R_f (10% EtOAc/hexane): 0.38. Purification by column chromatography. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.03 – 7.91 (m, 2H), 7.62 (dd, J = 10.6, 4.2 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 4.72 (s, 2H). The spectral data of this chemical matches previous work²¹.

Figure S24. NMR Spectra of 2-Chloro-1-(*p*-tolyl)ethan-1-one (3b): Colorless Solid. R_f (10% EtOAc/hexane): 0.38. Purification by column chromatography. ¹H NMR (500 MHz, CDCl₃)

δ 7.79 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 7.9 Hz, 2H), 4.62 (s, 2H), 2.36 (s, 3H). The spectral data of this chemical matches previous work²¹.

Figure S25. NMR Spectra of 2-Chloro-1-(4-bromophenyl)ethan-1-one (3c) : Colorless Solid. R_f (10% EtOAc/hexane): 0.39. Purification by column chromatography. ¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.84 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 4.58 (s, 2H). The spectral data of this chemical matches previous work²¹.

Figure S26. NMR Spectra of 2-Chloro-1-(4-chlorophenyl)ethan-1-one (3d): Colorless Solid. R_f (10% EtOAc/hexane): 0.35. Purification by column. ¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.93 (d, J = 8.5 Hz, 1H), 7.50 (d, J = 8.5 Hz, 1H), 4.67 (s, 1H). The spectral data of this chemical matches previous work²¹.

Reference

- 1 R. A. V. Rossel, R. N. McGlynn and A. B. McBratney, *Geoderma*, 2006, **137**, 70–82.
- 2 P. Makuła, M. Pacia and W. Macyk, *J Phys Chem Lett*, 2018, 9, 6814–6817.
- 3 Y. Feng, S. Lin, S. Huang, S. Shrestha and G. Conibeer, *J Appl Phys*.
- 4 A. J. Bard and L. R. Faulkner, *Surf. Technol*, 1983, **20**, 91–92.
- 5 D. B. Hibbert and D. B. Hibbert, *Introduction to electrochemistry*, Springer, 1993.
- 6 D. L. Rousseau, R. P. Bauman and S. P. S. Porto, *Journal of Raman Spectroscopy*, 1981, **10**, 253–290.
- 7 S. Kesari, R. Rao, M. K. Gupta, R. Mittal and G. Balakrishnan, *Journal of Raman Spectroscopy*, 2019, **50**, 587–594.
- 8 R. D. Shannon, *J Appl Phys*, 1993, **73**, 348–366.
- 9 A. B. P. Lever and S. A. Rice, 1969.

- 10 D. N. Sathyanarayana, *Electronic absorption spectroscopy and related techniques*, Universities Press, 2001.
- 11 M. Kozielski, I. Pollini and G. Spinolo, *Journal of Physics C: Solid State Physics*, 1972, **5**, 1253.
- 12 K. B. N. Sarma, B. J. Reddy and S. V. J. Lakshman, *Phys Lett A*, 1982, **92**, 305–308.
- 13 I. Fontana, A. Lauria and G. Spinolo, *Physica status solidi* (b), 2007, **244**, 4669–4677.
- 14 K. Kawashima, R. A. Márquez, Y. J. Son, C. Guo, R. R. Vaidyula, L. A. Smith, C. E. Chukwuneke and C. B. Mullins, *ACS Catal*, 2023, **13**, 1893–1898.
- 15 D. Tripathy and S. Sampath, J Power Sources, 2020, 478, 229066.
- 16 J.-C. Dupin, D. Gonbeau, P. Vinatier and A. Levasseur, *Physical Chemistry Chemical Physics*, 2000, **2**, 1319–1324.
- 17 J.-J. Jow, L.-Y. Hsieh, H.-P. Cho, H.-R. Chen and C.-W. Kuo, *Journal of Industrial and Engineering Chemistry*, 2013, **19**, 1730–1734.
- 18 S. Anantharaj, P. E. Karthik and S. Kundu, *Catal Sci Technol*, 2017, **7**, 882–893.
- 19 Y. Yan, X. Ge, Z. Liu, J.-Y. Wang, J.-M. Lee and X. Wang, *Nanoscale*, 2013, **5**, 7768–7771.
- 20 V. Kiran, D. Mukherjee, R. N. Jenjeti and S. Sampath, *Nanoscale*, 2014, 6, 12856–12863.
- 21 F. Han, D. Zhang, S. Salli, J. Ye, Y. Li, F. Rosei, X.-D. Wen, H. Niemantsverdriet, E. Richards and R. Su, ACS Catal, 2022, **13**, 248–255.
- 22 X. He, H. Chang, Y. Zhao, X. Li, S. Liu, Z. Zang, C. Zhou and G. Cai, *Chemistry–An Asian Journal*, 2023, **18**, e202200954.
- Z. Wang, L. Wang, Z. Wang, P. Li and Y. Zhang, *Chinese Chemical Letters*, 2021, **32**, 429–432.