Supplementary Information

Hydrothermal Growth and Characterization of Large Rb₂SnBr₆ Double Perovskite Crystals: A Promising Semiconductor Material for Photocatalysis and Optoelectronics

Rahidul Hasan¹, Hafiz Zohaib Aslam¹, Rutva Joshi¹, Roger A. Lalancette¹, Georgiy Akopov^{1,*}

¹Department of Chemistry, Rutgers University - Newark, Newark, NJ 07102, United States;

*Corresponding author: georgiy.akopov@rutgers.edu

Note about notation: Going forward, we will use (Rb:Sn:X) ratio notation to indicate the nominal stoichiometry used where relevant: Rb_2SnBr_6 (2:1:6) or Rb_2SnBr_6 (4:3:10).

Synthesis technique	Hydrothermal		Evaporation	
Solvent	H ₂ O	H ₂ O	H_2O	DMF
Temperature (°C)	220	150	120	120
Crystal size	Centimeter	Millimeter	Micron	Micron
Crystal Color	Light Yellow	Light Yellow	Dark Brown	Dark Yellow
Product	Air and	Air and	Air and moisture	Air and moisture
Stability	moisture stable	moisture stable	stable	stable
Phase formed	Rb_2SnX_6 , Fm-3m			

Table S1. Experimental results of several adopted techniques for fabricating the Rb_2SnBr_6 halide double perovskite.

Table S2. The unit cell dimension of the pristine, 50% Cl-doped and 10% I-doped Rb₂SnBr₆

Sample	Rb2SnBr6 (2:1:6)	Rb ₂ SnBr ₃ Cl ₃ (2:1:6)	$Rb_2SnBr_{5.5}I_{0.5}(2:1:6)$
Space group	Fm-3m	Fm-3m	Fm-3m
a (Å)	10.678	10.57478	10.77
Rwp (%)	4.38	3.7	4.67
Volume (Å ³)	1217.71	1182.53	1251.48
$\alpha = \beta = \gamma =$	90	90	90

Figure S1: The measured crystal domain size of the single crystal in (a) Rb_2SnBr_6 (4:3:10), (b) Rb_2SnBr_6 (2:1:6), (c) $Rb_2SnBr_{5.4}Cl_{0.6}$ (2:1:6), (d) $Rb_2SnBr_{4.5}Cl_{1.5}$ (2:1:6), (e) $Rb_2SnBr_3Cl_3$ (2:1:6), (f) $Rb_2SnBr_{1.5}Cl_{4.5}$ (2:1:6), (g) $Rb_2SnBr_{5.5}I_{0.5}$ (2:1:6), and (h) Rb_2SnCl_6 (2:1:6). The grid is 1x1 mm².

Figure S2. Powder XRD data for Cl- and I-doped Rb₂SnBr₆ (2:1:6).

Table. EDS single point analysys of the CI-doped $Rb_2SnBr_{4.5}CI_{1.5}$ (2:1:6)

Element	At.%
Rb	17.03
Sn	12.38
Br	62.06
CI	8.53
Total	100
Experimental composition	$Rb_{1.9q\pm0.5\%}Sn_{1.04(\pm4\%)}Br_{7.76(\pm72\%)}Cl_{2.4(\pm60\%)}$

Figure S3. Energy-dispersive X-ray spectroscopy (EDS) single spot analysis of the $Rb_2SnBr_{4.5}Cl_{1.5}$ (2:1:6) powder sample.

Table. EDS point analysys of the I-doped $Rb_2SnBr_{5.4}I_{0.6}$ (2:1:6)

Element	At.%	
Rb	16.15	
Sn	16.09	
Br	58.36	
I	9.4	
Total	100	
Experimental composition	$Rb_{1.88(\pm 6\%)}Sn_{1.35(\pm 35\%)}Br_{7.3(\pm 35.18\%)}I_{0.7(\pm 16\%)}$	

Figure S4. Energy-dispersive X-ray spectroscopy (EDS) analysis of the powder sample of the $Rb_2SnBr_{5.4}I_{0.6}$ (2:1:6).

Figure S5. Lower angle peak shifting of the pristine and doped Rb₂SnBr₆.

Figure S6. Extracted powder samples from the low-temperature process for the fabrication of Rb₂SnBr₆; (a) Rb₂SnBr₆ (2:1:6) from hydrothermal process (T = 150°C, H₂O); (b) Rb₂SnBr₆ (4:3:10) from hydrothermal process (T = 150°C, H₂O); (c) Rb₂SnBr₆ (2:1:6) from evaporation process (T = 120°C, H₂O); and (d) Rb₂SnBr₆ (2:1:6) from evaporation process (T = 120°C, DMF).

Figure S7. PXRD analysis of the low-temperature synthesis compositions of $Rb_2SnBr_6(2:1:6)$ and $Rb_2SnBr_6(4:3:10)$ from the $SnBr_2$ and $SnBr_4$ salts as Sn sources. The unidentified peaks in the XRD plots of Rb_2SnBr_6 (4:3:10) are from the corresponding raw materials peaks of $SnBr_2$ and $SnBr_4$.

Figure S8. Powder XRD data for the Hydrothermal process (120 °C) to synthesize Rb_2SnBr_6 (4:3:10) single crystal. The unidentified peaks in the XRD plots of Rb_2SnBr_6 (4:3:10) are from the corresponding raw materials peaks of $SnBr_2$ and $SnBr_4$.

Figure S9. It has analyzed Powder crystal XRD of Rb_2SnCl_6 and its Rietveld refinement crystal structure synthesized by hydrothermal process (*Fm*-3*m*, a = 10.14 Å, V³ = 1042.68 Å³, R_{wp} = 3.41).

Figure S10. Hydrothermal synthesized crystals of (a) as-synthesized Rb_2SnI_6 and (b) oxidized product of Rb_2SnI_6 .

Table. Three point EDS analysis of the Rb_2SnBr_6 (2:1:6) crystal powder.

Selected point	Elements	At.%	
	Rb	21.09	
	Sn	15.97	
Point 1	Br	62.93	
	Total	100	
	Experimental composition	Rb _{2.46(±21%)} Sn _{1.35(±35%)} Br _{7.87(±31%)}	
	Rb	13.31	
	Sn	13.12	
Point 2	Br	73.57	
	Total	100	
	Experimental composition	Rb _{1.56(±22%})Sn _{1.1(±10%} ,Br _{9.2(±53%)}	
Point 3	Rb	16.39	
	Sn	19.25	
	Br	64.36	
	Total	100	
	Experimental composition	$Rb_{1.92(\pm 4\%)}Sn_{1.6(\pm 60\%)}Br_{8.05(+34\%)}$	

Figure S11. Three-point energy-dispersive X-ray spectroscopy (EDS) analysis of the powder sample of the $Rb_2SnBr_6(R2)$.

Figure S12. Calculated direct and indirect optical bandgap of the pristine and doped Rb_2SnBr_6 (2:1:6) from powder samples using the UV-absorption data: (**a**,**b**) (Rb_2SnBr_6 (2:1:6), (**c**,**d**) Rb_2SnCl_6 , (**e**,**f**) Rb_2SnI_6 , (**g**,**h**) $Rb_2SnBr_3Cl_3$ and (**g**,**h**) $Rb_2SnBr_{5.5}Cl_{0.5}$.

Figure S13. Thermogravimetric analysis (TGA) of the Rb₂SnBr₆ halide double perovskite single crystals; (a) Rb₂SnBr₆ (2:1:6) (b) Rb₂SnBr₆ (4:3:10).