Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Influence of weakly coordinating anions binding to the hexa-tert-butyl dysprosocenium

cation

Sophie C. Corner,^a Gemma K. Gransbury,^a* and David P. Mills^a*

^aDepartment of Chemistry, The University of Manchester, Oxford Road, Manchester,

M13 9PL, U.K.

Email: david.mills@manchester.ac.uk, gemmagransbury@gmail.com.

Contents

1.	Infrared Spectroscopy	S2
2.	NMR Spectroscopy	
3.	X-ray Crystallography	S7
4.	Magnetic Measurements	S10
5.	CASSCF-SO Calculations	

1. Infrared Spectroscopy

Figure S1. ATR-IR spectrum of 1, recorded as a microcrystalline powder.

Figure S2. ATR-IR spectrum of 2, recorded as a microcrystalline powder.

2. NMR Spectroscopy

Figure S3. ¹H NMR spectrum of 1 (400 MHz) in C_6H_5F ; full spectral range 200 to -200 ppm.

Figure S4. ¹H NMR spectrum of **1** (400 MHz) in C_6H_5F with a C_6D_6/C_6H_5F insert; full spectral range 200 to -200 ppm.

Figure S5. ¹H NMR spectrum of **2** (400 MHz) in C₆H₅F; full spectral range 200 to -200 ppm.

Figure S6. ¹H NMR spectrum of **2** (400 MHz) in C_6H_5F with a C_6D_6/C_6H_5F insert; full spectral range 200 to -200 ppm.

Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum of $[Al(C_2H_5){OC(C_6F_5)_3}_2]$ (126 MHz) in C₆D₆.

Figure S9. ¹⁹F NMR spectrum of $[Al(C_2H_5){OC(C_6F_5)_3}_2]$ (376 MHz) in in C_6D_6 .

3. X-ray Crystallography

Figure S10. Top view of the single crystal XRD structure of **1** (Dy: cyan, C: grey, Al: purple, F: green, O: red). Displacement ellipsoids set at 30% probability levels; hydrogen atoms have been omitted for clarity.

Figure S11. Top view of the single crystal XRD structure of **2** (Dy: cyan, C: grey, Al: purple, F: green, O: red). Displacement ellipsoids set at 30% probability levels; hydrogen atoms and the lattice fluorobenzene molecules have been omitted for clarity.

	1	2
Formula	$C_{46}H_{58}AlClDyF_{27}O_3$	$C_{86}H_{73}AlClDyF_{32}O_2$
molecular mass, g mol ⁻¹	1396.85	1971.37
cryst size, mm	$0.236 \times 0.191 \times 0.103$	$0.464 \times 0.249 \times 0.167$
cryst syst	orthorhombic	triclinic
space group	$Pca2_1$	PĪ
collection temperature, K	99.97(10)	99.97(10)
a, Å	21.2423(2)	12.3345(3)
b, Å	14.24450(10)	16.0941(5)
c, Å	18.1335(2)	21.5697(7)
α, °	90	72.902(3)
β, °	90	78.936(2)
γ, °	90	85.763(2)
V, Å ³	5486.94(9)	4015.9(2)
Z	4	2
$\rho_{calcd}, g \ cm^{-3}$	1.691	1.630
μ , mm ⁻¹	9.090	1.098
no. of reflections made	38414	36237
no. of unique reflns, R _{int}	10820, 0.0303	18504, 0.0455
no. of reflns with $F^2 > 2\sigma(F^2)$	10124	15087
transmn coeff range	0.524–1.000	0.609–1.000
R, R_w^a (F ² > 2 σ (F ²))	0.0451, 0.1287	0.0627, 0.1516
R, R _w ^a (all data)	0.0480, 0.1319	0.0807, 0.1623
S ^a	1.007	1.017
parameters, restraints	1101, 3151	1191, 1674
max., min. diff map, e Å ⁻³	0.597, -0.742	2.437, -1.094

Table S1. Crystallographic data for 1 and 2.

^a Conventional $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$; $R_w = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$; $S = [\Sigma w (F_o^2 - F_c^2)^2 / no.$ data – no. params)]^{1/2} for all data.

4. Magnetic Measurements

Figure S12. Temperature dependence of the molar magnetic susceptibility (χT) product for powdered **1** measured under a 0.1 T applied magnetic field (black circles) and CASSCF calculated curve (red line).

Figure S13. Temperature dependence of the molar magnetic susceptibility (χT) product for powdered **2** measured under a 0.1 T applied magnetic field (black circles) and CASSCF calculated curve (red line).

Figure S14. Isothermal magnetisation *versus* field for **1** at 2 (black squares) and 4 K (red circles), with CASSCF calculated curves (solid lines).

Figure S15. Isothermal magnetisation *versus* field for **2** at 2 (black squares) and 4 K (red circles), with CASSCF calculated curves (solid lines).

Figure S16. Cole-Cole plot for **1** at a) 2–24 K and b) 27–73 K. Solid lines are fits to the generalised Debye model, giving $0.014 \le \alpha \le 0.29$.

Figure S17. In-phase ac susceptibility (χ') of **1** in a zero field at a) 2–24 K and b) 27–73 K. Solid lines are fits to the generalised Debye model, giving $0.014 \le \alpha \le 0.29$.

Figure S18. Out-of-phase ac susceptibility (χ'') of **1** in a zero field at a) 2–24 K and b) 27–73 K. Solid lines are fits to the generalised Debye model, giving $0.014 \le \alpha \le 0.29$.

Т	$ au_{ m debye}$	τ_{Debye}^{err}	Χs	χ_{S}^{err}	Χт	χ_{T}^{err}	α	α^{err}	$\langle \ln \tau \rangle$	$\sigma_{\langle \ln \tau \rangle}$
(K)	(s)	(cm ³ /mol)		(cm ³	(cm ³ /mol)			ln	(s)
2	5.38E-1	1.02E-2	5.10E-2	8.64E-3	6.72	5.42E-2	2.92E-1	4.81E-3	-0.621	1.807
3	4.55E-1	6.06E–3	2.90E-2	4.80E-3	4.58	2.63E-2	2.79E-1	3.72E-3	-0.788	1.745
4	3.88E-1	4.70E-3	4.77E-2	3.78E-3	3.42	1.81E-2	2.60E-1	3.77E-3	-0.947	1.649
6	3.16E–1	3.66E-3	2.61E-2	2.97E-3	2.30	1.20E-2	2.30E-1	4.14E-3	-1.151	1.504
8	2.72E-1	2.79E-3	2.25E-2	2.25E-3	1.75	8.11E-3	2.14E-1	3.96E-3	-1.302	1.429
10	2.37E-1	1.95E-3	1.95E-2	1.57E-3	1.39	5.13E-3	2.02E-1	3.35E-3	-1.439	1.370
12	2.12E-1	1.36E-3	1.64E-2	1.06E-3	1.13	3.21E-3	1.96E-1	2.70E-3	-1.553	1.343
15	1.90E-1	1.11E-3	1.40E-2	8.26E-4	9.19E–1	2.35E-3	1.91E-1	2.53E-3	-1.663	1.319
18	1.67E–1	1.17E–3	1.33E-2	8.69E-4	7.57E–1	2.28E-3	1.80E-1	3.14E-3	-1.789	1.264
21	1.46E-1	1.07E-3	1.25E-2	8.07E-4	6.36E–1	1.96E-3	1.69E–1	3.38E-3	-1.924	1.216
24	1.30E-1	8.13E-4	1.19E–2	6.32E-4	5.55E-1	1.44E-3	1.61E–1	2.97E-3	-2.039	1.176
27	1.15E–1	9.53E-4	1.16E–2	7.93E-4	4.92E-1	1.68E-3	1.44E–1	4.10E-3	-2.166	1.097
30	1.02E-1	7.19E–4	1.15E-2	6.32E-4	4.42E-1	1.26E-3	1.34E-1	3.57E-3	-2.283	1.047
33	8.83E-2	6.52E–4	1.10E-2	6.25E–4	3.99E-1	1.16E–3	1.26E-1	3.80E-3	-2.428	1.007
36	7.93E-2	5.29E-4	1.09E-2	5.41E-4	3.68E-1	9.57E-4	1.13E–1	3.52E-3	-2.535	0.947
39	6.79E–2	5.54E-4	1.06E-2	6.35E-4	3.38E-1	1.05E-3	1.03E-1	4.37E-3	-2.689	0.893
42	5.90E-2	4.48E-4	1.05E-2	5.69E-4	3.15E-1	8.90E-4	9.68E-2	4.12E-3	-2.831	0.862
45	4.99E-2	3.64E-4	1.04E-2	5.38E-4	2.95E-1	7.86E–4	8.05E-2	4.05E-3	-2.997	0.775
49	3.76E-2	2.24E-4	9.31E-3	4.28E-4	2.69E-1	5.64E-4	6.91E–2	3.37E-3	-3.282	0.712
53	2.58E-2	1.71E–4	9.39E-3	4.75E–4	2.48E-1	5.51E-4	4.90E-2	3.85E-3	-3.658	0.590

Table S2. Best fit parameters to the generalised Debye model for 1.

57	1.46E-2	1.09E-4	9.52E-3	5.50E-4	2.31E-1	5.58E-4	3.24E-2	4.45E–3	-4.227	0.473
59	1.01E-2	6.28E–5	8.90E-3	4.48E-4	2.24E-1	6.11E-4	3.83E-2	3.87E-3	-4.597	0.517
61	6.46E-3	5.30E-5	9.30E-3	6.35E-4	2.18E-1	7.08E-4	3.17E-2	5.14E-3	-5.042	0.468
63	3.88E-3	1.41E–5	8.83E-3	3.05E-4	2.10E-1	2.72E-4	2.73E-2	2.29E-3	-5.552	0.432
65	2.27E-3	1.50E-5	9.00E-3	6.08E-4	2.03E-1	4.28E-4	2.18E-2	4.20E-3	-6.087	0.385
67	1.32E-3	6.81E–6	9.68E-3	5.31E-4	1.97E-1	2.87E-4	1.63E-2	3.30E-3	-6.632	0.332
69	7.63E–4	6.15E–6	8.47E-3	9.32E-4	1.93E-1	3.79E-4	2.42E-2	4.98E-3	-7.178	0.406
71	4.47E-4	4.36E6	9.81E-3	1.24E-3	1.86E-1	3.31E-4	1.35E-2	5.61E–3	-7.714	0.301
73	2.65E-4	4.12E-6	9.49E-3	2.05E-3	1.82E-1	3.39E-4	1.42E-2	7.32E-3	-8.237	0.309

Figure S19. Relaxation profile for **1** showing contributions from Orbach, Raman and QTM processes.

Figure S20. Cole-Cole plot for **2** at 12–62 K. Solid lines are fits to the generalised Debye model, giving $0.025 \le \alpha \le 0.20$.

Figure S21. In-phase (χ') ac susceptibility of **2** in a zero field at 12–62 K. Solid lines are fits to the generalised Debye model, giving $0.025 \le \alpha \le 0.20$.

Figure S22. Out-of-phase (χ'') ac susceptibilities of **2** in a zero field at 12–62 K. Solid lines are fits to the generalised Debye model, giving $0.025 \le \alpha \le 0.20$.

Т	$ au_{ m debye}$	τ_{Debye}^{err}	Χs	χ^{err}_{S}	Χт	χ_{T}^{err}	α	α^{err}	$\langle \ln \tau \rangle$	$\sigma_{\langle \ln \tau \rangle}$
(K)	(s)		(cm ³ /mol)		(cm^3)	/mol)			ln	(s)
12	1.15	2.32E-2	1.86E-2	1.01E-3	1.08	1.14E-2	2.02E-1	4.97E-3	0.142	1.370
14	6.78E–1	8.18E-3	1.78E-2	9.27E-4	8.76E-1	5.93E-3	1.46E–1	4.42E-3	-0.389	1.106
16	4.49E–1	4.39E-3	1.63E-2	9.49E-4	7.50E-1	4.17E–3	1.10E-1	4.50E-3	-0.801	0.929
18	3.14E-1	2.82E-3	1.48E-2	9.59E-4	6.56E-1	3.24E-3	8.96E-2	4.64E-3	-1.159	0.824
20	2.29E-1	1.31E-3	1.28E-2	6.06E-4	5.56E-1	1.67E-3	7.14E–2	3.17E-3	-1.476	0.725
23	1.52E-1	1.00E-3	1.14E-2	6.95E-4	4.76E-1	1.54E-3	5.03E-2	3.86E-3	-1.885	0.598
26	1.08E-1	6.55E-4	1.09E-2	6.02E–4	4.22E-1	1.15E–3	4.61E-2	3.55E-3	-2.222	0.571
29	8.05E-2	4.49E4	1.02E-2	5.31E-4	3.78E-1	9.00E-4	3.70E-2	3.32E-3	-2.520	0.508
32	5.94E-2	3.71E-4	9.21E-3	5.62E-4	3.42E-1	8.55E-4	3.85E-2	3.71E–3	-2.824	0.518
35	4.28E-2	3.30E-4	9.05E-3	6.76E–4	3.12E-1	9.17E-4	2.52E-2	4.66E-3	-3.152	0.415
38	2.98E-2	1.72E-4	8.42E-3	4.88E-4	2.88E-1	5.91E-4	2.76E-2	3.45E-3	-3.512	0.435
41	1.90E-2	1.63E-4	8.01E-3	7.16E–4	2.66E-1	7.56E-4	3.14E-2	5.13E–3	-3.963	0.465
44	1.15E-2	8.31E-5	7.47E–3	6.00E-4	2.49E-1	5.42E-4	4.19E–2	4.25E-3	-4.466	0.542
47	6.41E–3	7.13E–5	7.40E-3	9.55E-4	2.33E-1	7.18E–4	4.25E-2	6.55E–3	-5.051	0.546
50	3.33E-3	2.72E-5	6.36E–3	7.32E-4	2.22E-1	6.08E-4	5.66E-2	4.94E-3	-5.704	0.638
53	1.59E-3	1.55E-5	6.77E–3	9.76E-4	2.06E-1	5.69E-4	5.02E-2	5.92E-3	-6.444	0.597
56	7.39E-4	9.98E-6	7.39E-3	1.56E-3	1.96E-1	5.85E-4	4.64E-2	7.91E–3	-7.210	0.573
59	3.31E-4	8.92E-6	8.23E-3	3.39E-3	1.85E-1	6.87E–4	4.43E-2	1.31E-2	-8.014	0.559
62	1.46E-4	1.02E-5	6.58E–3	8.59E-3	1.78E–1	6.92E-4	4.98E-2	2.07E-2	-8.829	0.595

Table S3. Best fit parameters to the generalised Debye model for 2.

Figure S23. Relaxation profile for 2 showing contributions from Orbach and Raman processes.

5. CASSCF-SO Calculations

Table S4. Electronic structure of 1 calculated with the crystal field parameters obtained from

 CASSCF-SO using the solid-state geometry of 1 in zero-field. Each row corresponds to a

 Kramers doublet.

Energy	Energy	_	_	_	Angle ^a	Wavefunction	
(cm^{-1})	(K)	g _x	gy	gz	(deg)		< J _z >
0.00	0.00	0.0002	0.0002	19.92		98% ± 15/2 >	±7.469
357.76	514.81	0.005	0.005	17.0	2.2	98% ± 13/2 >	±6.452
608.55	875.69	0.04	0.04	14.3	4.4	94% ± 11/2⟩ + 2% ± 7/2⟩	±5.454
778.57	1120.34	0.2	0.3	11.5	3.3	88% ± 9/2⟩ +6% ± 5/2⟩ +	±4.375
						$2\% \pm 13/2\rangle + 2\% \pm 1/2\rangle$	
892.47	1284.25	3.8	5.3	7.4	14.1	68% ± 7/2) + 18% ± 3/2)	± 2.800
						$+6\% \mid \mp 1/2 \rangle + 3\% \mid \pm 11/2 \rangle$	
						45% ± 5/2) + 26% ± 1/2)	
970 47	1306 /0	2.4	5.0	10.0	84.0	+ 13% ∓ 7/2 > + 6% ∓	+1.007
970.47	1370.47	2.4	5.0	10.9	04.0	$3/2\rangle + 5\% \mid \pm 9/2\rangle + 3\% \mid \pm$	1.007
						7/2>	
						28% ± 3/2> + 20% ∓ 5/2>	
						+ 16% ± 5/2 > + 15%	
1105.25	1590.43	0.09	0.2	16.0	88.3	$ \mp 3/2\rangle + 6\% \pm 7/2\rangle + 5\%$	±0.157
						$ \pm 1/2\rangle + 4\% \mp 1/2\rangle + 4\%$	
						∓ 7/2}	
						29% ± 1/2) + 28% ∓ 1/2)	
1001.00	1901.36	901.36 0.008	0.02	19.4	88.8	+ 18% ± 3/2 > + 14%	0.1.12
1321.33						$ \mp 3/2\rangle + 6\% \pm 5/2\rangle + 4\%$	±0.143
						∓ 5/2⟩	

^a The angle between the g_z value of the excited Kramers doublet and the ground Kramers doublet.

Energy	Energy				Angle ^a	Wavefunction		
(cm ⁻¹)	(K)	g _x	gy	gz	(deg)		$\langle J_z \rangle$	
0.00	0.00	0.0001	0.0002	19.86		97% ± 15/2) + 3% ± 11/2)	±7.446	
340.89	490.53	0.004	0.005	16.9	2.8	95% ± 13/2 > + 4% ± 9/2 >	±6.404	
584.20	840.65	0.2	0.2	14.2	5.9	$90\% \mid \pm 11/2 \rangle + 5\% \mid \pm 7/2 \rangle + 3\% \mid \pm 9/2 \rangle + 2\% \mid \pm 15/2 \rangle$	±5.365	
						$70\% \mid = 9/2$ + $13\% \mid = 10/2$ + $70\% \mid = 9/2$ + $13\% \mid = 5/2$ +		
736.51	1059.82	2.4	3.4	10.2	4.4	$4\% \mid \pm 1/2 \rangle + 4\% \mid \pm 13/2 \rangle +$	±3.916	
						4% ± 7/2) + 2% ± 3/2)		
						39% ± 7/2) + 25% ± 3/2) +		
820.75	1181.04	3.0	7.0	8 1	80.2	14% $ \mp 1/2\rangle + 8\% \mp 9/2\rangle +$	+1 664	
820.75	1101.04	5.9	7.0	0.1	80.2	6% ± 11/2⟩ + 3% ∓ 5/2⟩ +	±1.004	
						$2\% \mid \pm 5/2 \rangle + 2\% \mid \pm 9/2 \rangle$		
						19% ± 7/2) + 18% ± 5/2) +		
017.08	1310.65	0.03	0.3	12.5	878	15% ∓ 7/2⟩ + 13% ± 1/2⟩ +	+0.584	
917.00	1319.03	1317.03	0.05	0.5	15.5	02.0	$13\% \mid \mp 5/2 \rangle + 8\% \mid \pm 9/2 \rangle +$	±0.364
						7% ∓ 1/2 > + 3% ∓ 9/2 >		
						24% ± 5/2⟩ + 19% ∓ 3/2⟩ +		
1072 12	1544 10	0.1	0.2	16.5	<u> </u>	$18\% \mid \pm 3/2 \rangle + 15\% \mid \mp 5/2 \rangle +$	0.120	
1075.12	1344.19	0.1	0.2	16.5	88.0	$8 \mp7/2 angle+6\% \pm7/2 angle+5\%$	±0.169	
						$ \pm 1/2\rangle + 2 \mp 1/2\rangle$		
						$28\% \mid \pm 1/2 \rangle + 26\% \mid \mp 1/2 \rangle +$		
1317.98	1896.55	0.005	0.006	19.5	88.5	19% $ \pm 3/2\rangle + 14\%$ $ \mp 3/2\rangle +$	±0.178	
						7% ± 5/2⟩ + 4% ∓ 5/2⟩		

Table S5. Electronic structure of **2** calculated with the crystal field parameters obtained from CASSCF-SO using the solid-state geometry of **2** in zero-field. Each row corresponds to a Kramers doublet.

^a The angle between the g_z value of the excited Kramers doublet and the ground Kramers doublet.