Selective photoreduction of carbon dioxide to formic acid using $Cs_3Bi_2Cl_9$ -Ir/IrO_x hybrid materials

Govardhan Pandurangappa, Alamelu Kaliyaperumal, Raghuram Chetty, * and Aravind Kumar Chandiran*

Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.

*raghuc@iitm.ac.in, aravindkumar@iitm.ac.in

Electronic Supplementary Information

Table S1. Iridium content analysis of catalyst samples by ICP-OES.

S. No	Sample	g	Wavelength	Dilution
			(nm)	Factor
1	Cs ₃ Bi ₂ Cl ₉	0.0156	Bi-223.061	10
2	Cs ₃ Bi ₂ Cl ₉ - Ir/IrO _X	0.0157	Bi-223.061	10
		0.0157	lr-205.222	1

Table.S2. Fitting parameters for time resolved PL studies using a tri-exponential function.

Sample	τ ₁ (ns)	A 1	τ₂(ns)	A ₂	τ₃(ns)	A ₃
Cs ₃ Bi ₂ Cl ₉	3.85	33.84	12.36	31.04	0.52	35.12
Cs ₃ Bi ₂ Cl ₉ -	4.55	28.05	13.17	19.06	0.46	52.89
lr/lrO _X						

Where A_1 , A_2 , and A_3 are relative amplitudes.

Element	Weight (%)	Atomic (%)
СІК	26.82	62.75
Cs L	36.09	22.52
Bi M	37.09	14.72
Totals		100.00

Table.S3. EDAX analysis of Cs₃Bi₂Cl₉.

 Table.S4. EDAX analysis of Cs3Bi2Cl9-Ir/IrOx.

Element	Weight (%)	Atomic (%)	
CI K	23.61	58.87	
Cs L	35.74	23.76	
lr M	4.86	2.24	
Bi M	35.79	15.14	
Totals		100.00	

Table.S5. A comparison of data with other materials which belongs to same class.

Catalyst	Light source	Reaction mode	Product (μmol g ⁻¹ h ⁻¹)	Ref.
Cs ₃ Bi ₂ Cl ₉	300W Xe arc	Gas-solid (CO ₂	CO-16.6	1
Cs ₃ Bi ₂ Br ₉	lamp	+ H ₂ O)	CO-26.9	
Cs ₃ Bi ₂ I ₉			CO-1.1	
Cs ₃ Bi ₂ (Cl _{0.5} Br _{0.5}) ₉	300 W Xe arc	Gas-solid (CO ₂	CO-16	2
Cs ₃ Bi ₂ (Br _{0.5} I _{0.5}) ₉	lamp λ > 420	+ H ₂ O)	CO-18	
Cs ₃ Bi ₂ I ₉	nm		CO-3.6	
Cs ₃ Bi ₂ I ₉	32 W UV-B	Gas-solid (CO ₂ + H ₂ O)	CO-7.7, CH ₄ -1.4	3
Rb ₃ Bi ₂ I ₉	(305 nm)		CO-1.8, CH ₄ -1.7	
(CH ₃ NH ₃) ₃ Bi ₂ I ₉			CO-0.7, CH ₄ -0.9	
Cs ₃ Bi ₂ Br ₉ (CBB)	300 W Xe lamp	Gas-solid (CO ₂	CO-150, CH ₄ -11.5	4
3CBB/Bi-MOF		+ H ₂ O)	CO-572.2, CH ₄ -	
3CBB: Bi-MOF			32.5	
Bi-MOF			CO-230, CH ₄ -8.0	
			CO-130, CH ₄ -7.0	
Cs ₃ Bi ₂ I ₉	300 W Xe arc	Gas-solid (CO ₂	CO-1.8	5
Cs ₃ Bi ₂ I ₉ /Bi ₂ WO ₆	lamp λ > 400 nm	1 1120)	CO-7.3	
Cs ₃ Bi ₂ I ₉ :Bi ₂ WO ₆			CO-2.5	
Bi ₂ WO ₆			CO-0.2	
Cs ₂ Bi ₂ Cl ₉	5 W UV Led	Acetonitrile +	HCOOH-115.6	This
		H ₂ O (99:1 VOI%)	CO-53.8	WORK
			CH₄-6.7	
Cs ₂ Bi ₂ Cl ₉ -Ir/IrO _X	5 W UV Led	Acetonitrile + H ₂ O (99:1 vol%)	HCOOH -168.2	This
			CO-38	WORK
			CH ₄ -4.5	

Figure S1. XPS analysis of Cs₃Bi₂Cl₉ before CO₂ photoreduction: (a) Cs 3d (b) Bi 4f (c) Cl 2p.

Figure S2. XPS analysis of $Cs_3Bi_2Cl_9$ -Ir/IrO_X before CO₂ photoreduction: (a) Cs 3d (b) Bi 4f (c) Cl 2p (d) Ir 4f.

Figure.S3. EDAX spectra of Cs₃Bi₂Cl₉.

Figure.S4. EDAX spectra of Cs₃Bi₂Cl₉-Ir/IrO_X.

Figure S5. Absolute values of absorbance for Cs₃Bi₂Cl₉ and Cs₃Bi₂Cl₉-Ir/IrO_X.

Figure S6. Tauc plot of (a) Cs₃Bi₂Cl₉ and (b) Cs₃Bi₂Cl₉-Ir/IrO_X.

Figure S7. PL decay studies of (a) Cs₃Bi₂Cl₉ and (b) Cs₃Bi₂Cl₉-Ir/IrO_X.

(x, y) = (0.18491, 0.14361)

Figure S8. CIE color coordinates of Cs₃Bi₂Cl₉.

Figure S9. PLQY yield of Cs₃Bi₂Cl₉.

(x, y) = (0.18347, 0.13914)

Figure S11. PLQY yield of Cs₃Bi₂Cl₉-Ir/IrO_x.

Figure S12. (a) PXRD patterns of $Cs_3Bi_2Cl_9$ in different solvent acetonitrile (ACN) conditions under continuous stirring for 12 hours. (b) corresponding UV-Visible absorption spectra.

Figure S13. SEM images of (a) Cs₃Bi₂Cl₉ in 1 vol% H₂O Acetonitrile (b) pure H₂O.

Figure S14. XPS spectra of O 1s (a) $Cs_3Bi_2Cl_9$ (b) $Cs_3Bi_2Cl_9$ -Ir/IrO_X before and after CO₂ photoreduction.

Figure S15. Gas chromatogram of $Cs_3Bi_2Cl_9$ -Ir/IrO_x after 5 hours of photocatalytic CO₂ reduction reaction displaying small quantity of oxygen in the head space.

Figure S16. UV-Vis absorption spectra of $Cs_3Bi_2Cl_9$ and $Cs_3Bi_2Cl_9$ -Ir/IrO_X after 5 hours of photocatalytic CO_2 reduction reaction.

Figure S17. (a) SEM image of single $Cs_3Bi_2Cl_9$ particle after 5 hours photocatalytic CO_2 reduction displaying two different morphologies, EDAX mapping in (b) micro particle dominant portion and (c) dominant in the nanosheets portion.

Figure S18. XPS analysis of $Cs_3Bi_2Cl_9$ before and after CO_2 photoreduction: (a) Cs 3d (b) Bi 4f (c) Cl 2p.

Figure S19. XPS analysis of $Cs_3Bi_2Cl_9$ -Ir/IrO_X before and after CO₂ photoreduction: (a) Cs 3d (b) Bi 4f (c) Cl 2p (d) Ir 4f.

Figure S20. PXRD patterns of Cs₃Bi₂Cl₉ after five cycles of photocatalytic CO₂ reduction.

Figure S21. (a) SEM images of $Cs_3Bi_2Cl_9$ after five cycles of photocatalytic CO_2 reduction (b) EDAX elemental mapping.

Figure S22. HCOOH yield on Cs₃Bi₂Cl₉-H₂O as a function of reaction time

Figure S23. (a) PXRD patterns of Cs₃Bi₂Cl₉, Cs₃Bi₂Cl₉-Ir/IrO_X after 25 hours of continuous photocatalytic CO₂ reduction and their (b) corresponding absorption spectra.

Figure S24. SEM images of Cs₃Bi₂Cl₉ after 25 hours continuous photocatalytic CO₂ reduction.

Figure S26. Standardization curves for (a) formic acid (b) carbon monoxide, and (c) methane.

References

- 1 F. Dong, J. Sheng, Y. He, J. Li, C. Yuan, H. Huang, S. Wang, Y. Sun and Z. Wang, *ACS Nano*, 2020, **14**, 13103–13114.
- 2 D. Wu, X. Zhao, Y. Huang, J. Lai, J. Yang, C. Tian, P. He, Q. Huang and X. Tang, *J. Phys. Chem. C*, 2021, **125**, 18328–18333.
- 3 S. S. Bhosale, A. K. Kharade, E. Jokar, A. Fathi, S. M. Chang and E. W. G. Diau, *J. Am. Chem. Soc.*, 2019, **141**, 20434–20442.
- 4 L. Ding, Y. Ding, F. Bai, G. Chen, S. Zhang, X. Yang, H. Li and X. Wang, *Inorg. Chem.*, , DOI:10.1021/acs.inorgchem.2c04041.
- 5 Z. L. Liu, R. R. Liu, Y. F. Mu, Y. X. Feng, G. X. Dong, M. Zhang and T. B. Lu, *Sol. RRL*, , DOI:10.1002/solr.202000691.