Supporting Information

Electronic supporting information for 'Interfacing CuO, CuBi₂O₄, and protective metal oxide layers to boost solar-driven photoelectrochemical hydrogen evolution.'.

Cathal Burns^{a,b}, Owen Woodford^b, Susanna L Stephens^b, Muhammed Rishan^{a,b}, Linsey Fuller^c, Shafeer Kalathil^a*, Elizabeth A Gibson^b*

- *a)* Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Department of Applied Sciences, Northumbria University, Newcastle, NE1 8ST, United Kingdom
- *b)* Energy Materials Laboratory, Chemistry, School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- *c)* Procter & Gamble Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, United Kingdom

Table of Contents

Additional Characterization of $CuBi_2O_4$	2
X-ray Diffraction	2
Additional Characterization of $CuO/CuBi_2O_4$	2
X-ray Photoelectron Spectroscopy	2
Absorbance, Reflectance and Tauc Plots	4
SEM and EDS	6
SEM	8
Electrochemistry	11
Gas Chromatography	12
Post-PEC Characterization	12
Additional Tandem Characterization	14
Transient Absorption Spectroscopy Data	15
Literature Comparison	15
References	17

X-ray Diffraction

Additional Characterization of CuBi₂O₄

Figure S1 – X-ray diffractograms of $CuBi_2O_4$ at 450 °C, 500 °C, and 650 °C. FTO, SnO_2 reference diffractograms and a $CuBi_2O_4$ reference diffractogram from the literature (kusachiite, PDF no.00-042-0334).

Additional Characterization of CuO|CuBi₂O₄ X-ray Photoelectron Spectroscopy

Figure S2 – a-e) XPS survey scans of $CuBi_2O_4$ showing the Cu 2p, Cu LLM Auger peaks, O 1s, C1s and Bi 4f peaks.

Figure S3 – a-d) XPS survey scans of CuO (bottom) showing Cu 2p, Cu LLM Auger peaks, O 1s, and C 1s peaks.

Survey Scans

c)

Figure S4 – Valence band X-ray photoelectron plot of CuO (red) and $CuBi_2O_4$ (yellow). The red vertical lines indicate the valence band positions (V.B.) for each material.

Valence Band Calculation

Material	Binding energies vs Fermi level (eV)		
CuO	0.38		
CuBi ₂ O ₄	1.40		

The valence band (VB) binding energy relative to the Fermi level ($E_{VB,F}$) is defined as the difference between the VB maximum and the Fermi level. The Fermi level is defined as the highest energy an electron can have at absolute zero. In a semiconductor, the Fermi level lies between the VB and conduction band (CB). The Fermi level lies close to the VB in p-type **Table S1** – Calculated valence bands of CuO and CuBi₂O₄.

To calculate the VB energy vs Vacuum: $E_{VB,Vac} = E_{VB,F} - F$ F = Work function of a material F-CuO = ~4.7-5.3 eV F-CuBi₂O₄ = ~4.7-5.3 eV Valence band vs Vacuum: CuBi₂O₄ = ~ 5.9 eV CuO = ~4.88 eV

Absorbance, Reflectance and Tauc Plots

Figure S5 – Calculated band structure of the CuO|CuBi $_2O_4$ heterojunction.

Figure S6 – **A)** Reflectance spectrum of CuO, and CuO | CuBi₂O₄. **B)** Tauc plot of CuO assuming an indirect bandgap. **C)** Absorbance spectrum of a CuBi₂O₄ film. **D)** Tauc plot for CuBi₂O₄ assuming an indirect bandgap.

SEM and EDS

Figure S7 - SEM images of the CuO | CuBi₂O₄ electrodes. **A**) View field = 2.99 mm, magnification 118 x, and working distance (WD) = 11.64 mm. **B**) View field = 14.2 μ m, magnification 24.8 kx, and working distance (WD) = 10.63 mm. **C**) View field = 4.15 μ m, magnification 84.7 kx, and working distance (WD) = 10.64 mm. **D**) View field = 1.64 μ m, magnification 215 kx, and working distance (WD) = 10.62 mm. (In-beam secondary electron detector with high voltage (HV)= 5.0keV for all images.)

Figure S8 – SEM-EDS of FTO | CuO | CuBi₂O₄. The results show elemental mapping showing that Cu, Bi, O, C and Sn (from the FTO glass) can be found at the surface of the sample.

Figure S9 – Chopped-light chronoamperometry of CuO and CuO|CuBi₂O₄ with 1-3 layers of CuBi₂O₄ at 0.4 V vs RHE.

Element Signal	Weight %	σ
Bi	53.57	0.63
Ni	17.53	0.38
0	15.17	0.25
Cu	11.72	0.30
С	1.75	0.09
F	0.26	0.13
Sn	0.00	1.97

Figure S10 – SEM-EDS data of $FTO|CuO|CuBi_2O_4|NiO$.

Figure S11 - SEM images of the CuO|CuBi₂O₄|NiO electrodes. A) View field = 192 μ m, magnification 915 x, and working distance (WD) = 12.33 mm. B). View field = 32 μ m, magnification 5.51 kx, and working distance (WD) = 12.36 mm. C) View field = 6.51 μ m, magnification 27.0 kx, and working distance (WD) = 12.36 mm. D) View field = 1.62 μ m, magnification 109 kx, and working distance (WD) = 12.36 mm. (Secondary electron detector with high voltage (HV)= 5.0keV for all images.)

Element Signal	Weight %	σ
Bi	69.96	1.41
Cu	13.98	0.38
0	12.27	0.32
С	1.29	0.09
Sn	1.25	1.89
Na	1.25	0.10
F	0.00	0.11
Ti	0.00	2.90

Figure S12 - SEM-EDS data of $FTO|CuO|CuBi_2O_4|TiO_2$.

Figure S13 – SEM images of CuO|CuBi₂O₄|TiO₂. A) View field = $3.21 \,\mu$ m, magnification 73.2 kx, and working distance (WD) = $12.16 \,\text{mm}$. B). View field = $15.7 \,\mu$ m, magnification 14.9 kx, and working distance (WD) = $12.17 \,\text{mm}$. C) View field = $64.8 \,\mu$ m, magnification 2.72 kx, and working distance (WD) = $12.17 \,\text{mm}$. (Secondary electron detector with high voltage (HV)= 5.0keV for all images.)

Figure S14 – SEM-EDS data of $CuO|CuBi_2O_4|MgO$.

Figure S15 - SEM images of CuO|CuBi₂O₄|MgO. A) View field = $3.19 \mu m$, magnification 73.6 kx, and working distance (WD) = 12.69 mm. B). View field = $6.86 \mu m$, magnification 34.2 kx, and working distance (WD) = 12.7 mm. C) View field = $31.7 \mu m$, magnification 7.4 kx, and working distance (WD) = 12.71 mm. (Secondary electron detector with high voltage (HV)= 5.0 keV for all images.)

Supporting Information

Figure S16 – Cross sectional SEM images of A) $CuO|CuBi_2O_4|NiO|Pt$, B) $CuO|CuBi_2O_4|TiO_2|Pt$, and C) $CuO|CuBi_2O_4|MgO|Pt$. A secondary electron detector with high voltage (HV)= 5.0 keV for all images.

Electrochemistry

Figure S17 – Cyclic voltammetry of CuO, CuBi₂O₄, CuO|CuBi₂O₄, and CuO|CuBi₂O₄|MgO|Pt. Scan rate = 10 mV s⁻¹.

Gas Chromatography

Reactio n Time (mins)	Applied V vs Ag/AgCl	рН	Charge passed	Electrons passed (mol)	Headspace volume (L)	H ₂ peak	H₂ ppm	[H ₂] / mol	Faradaic efficiency (%)
60	-0.2	7.2	2.41x10 ⁻¹	1.25 x10⁻ ₀	0.02	2461	357	1.18 x10 ⁻⁶	95%
120	-0.2	7.2	5.00 x10 ⁻¹	2.59 x10 ⁻	0.02	4654	686	2.27 x10 ⁻⁶	88%
180	-0.2	7.2	7.60 x10 ⁻¹	3.94 x10⁻ ₅	0.02	7405	1097	3.63 x10 ⁻⁶	92%

Table S2 – Table showing the faradaic efficiency calculations of the $CuO|CuBi_2O_4|MgO|Pt$ PEC cell at -0.2V vs Ag/AgCl with Pt wire as counter electrode. Experiments were carried out in a custom-built glass cell without an ion exchange membrane separating the counter and working electrodes.

ppm	mg m ⁻³	g/m ⁻³	mol m ⁻³	moldm ⁻³	mol
357	29.27	0.029	0.06	5.90 x10⁻⁵	1.18 x10 ⁻⁶
686	56.25	0.056	0.11	11.34 x10 ⁻⁵	2.27 x10⁻⁵
1097	89.95	0.090	0.18	18.13 x10 ⁻⁵	3.63 x10⁻ ⁶

Table S3 – Table showing ppm to moles conversion.

Figure S19 – X-ray diffractogram of $CuO|CuBi_2O_4|NiO|Pt$ before and after 3 hours of PEC at 0.4V vs RHE and 1 sun illumination (300W Xe lamp).

Figure S20 – X-ray diffractogram of CuO|CuBi₂O₄|MgO|Pt before and after 3 hours of PEC at 0.4V vs RHE and 1 sun illumination (300W Xe lamp).

Figure S21 – X-ray diffractogram of $CuO|CuBi_2O_4|TiO_2|Pt$ before and after 3 hours of PEC at 0.4V vs RHE and 1 sun illumination (300W Xe lamp).

Additional Tandem Characterization

Transient Absorption Spectroscopy Data

Sample	Conditions	YO	A1	t ₁ (ps)	A2	t ₂ (ps)	A ₃	t ₃ (ps)
CuO	10.0						<i>a</i>	100 Control 100
	Dry	-0.05±0.39	0.2	9.6±3.2	0.3	114.8±21.8	0.64	3720±499
CuBi O	5		c 14	10. O				
Cubi ₂ O ₄	Dry	0.24±0.01	0.26	0.7±0.2	0.296	7.54±0.9	0.192	1490±175
CuOI CuBi O	Electrolyte	0.15±0.01	0.30	19.3±2.1	0.14	124.1±378.0	0.33	1180±185
cuorcubi ₂ 04	Dry	0.15±0.01	0.50	4.8 ±0.4	0.46	944.85	-	-
CuO CuBi ₂ O ₄	Electrolyte	0.15±0.03	0.3	39.9±5.6	0.2	339.6±187.6	0.19	1804±1450
TiO ₂	Dry	0.20±0.01	0.26	5.3±0.6	0.2	71.0±6.3	0.26	1570±145
CuO CuBi ₂ O ₄	Electrolyte	0.16±0.01	0.27	1.7±0.2	0.4	48.7±3.6	0.2	1180±150
NiO								
	Dry	0.17±0.03	0.27	18.4±1.4	0.3	334.2±39.3	0.29	3910±1170
CuO CuBi ₂ O ₄	Electrolyte	0.19±0.01	0.28	2.0±0.2	0.2	53.9±5.4	0.26	1765±157
MgO	10771					10000000		1000
	Dry	0.14±0.01	0.29	1.5±0.2	0.3	36.3±3.2	0.22	955.2

Table S4 – Table compiling TA lifetimes for CuO, CuBi₂O₄, CuO|CuBi₂O₄, CuO|CuBi₂O₄|TiO₂, CuO|CuBi₂O₄|MgO, CuO|CuBi₂O₄|NiO. Lifetimes were fitted as exponential decays following the equation: $y=a1\cdot exp(x/t1) + a2\cdot exp(x/t2) + a3 \cdot exp(x/t3)+yO$. YO is a constant offset or a baseline value, y = change in absorbance, $t_x =$ lifetime component, and $A_x =$ pre-exponential coefficient. Weighted averages of each lifetime is shown in the right-hand column.

Literature Comparison

Photocathode	Applied Potential (vs RHE)	Conditions	Photocurrent Density (mA cm ⁻²)	Stable Operation Time (minutes)	Reference
CuO CuBi ₂ O ₄ Mg O Pt	0.4 V	Electrolyte: 0.2 M KCl, 0.01 M H_2KPO_4 , and 0.01 M HK_2PO_4 (pH	0.2	180	This work

		7.2).			
		Illumination: 300W Xe lamp calibrated using to 1 sun (filtered with an AM1.5G filter)			
CuO CuBi ₂ O ₄ TiO ₂ Pt/MoS ₂	0.4 V	As above.	0.1	180	This work
CuO CuBi ₂ O ₄ NiO Pt	0.3 V	As above.	0.3	180	This work
CuO CuBi ₂ O ₄ Pt	0.4 V	As above.	1.2	<10	This work
CuBi ₂ O ₄	0.2 V	0.1 M Na ₂ SO ₄	0.45	~3	1
Bare CuBi ₂ O ₄	0.6 V	$0.3 \text{ M} \text{ K}_2 \text{SO}_4$ and 0.2 M phosphate buffer (pH 7)	~0.1	300	2
Inverse opal CuBi ₂ O ₄	0.6 V	K_2SO_4 (0.3 M) and 0.2 M phosphate buffer (pH 6.65) with H $_2O_2$ as an electron scavenger.	2.95	120	3
CuBi ₂ O ₄ /Au/N, Cu–C	0.5 V	0.3 M K_2SO_4 and 0.2 M Phosphate buffer (pH 6.68)	0.3	50	4

CuBi ₂ O ₄	0.6 V	0.3 M K_2SO_4 and 0.2 M phosphate buffer (pH 6.65) (With H_2O_2 as an electron scavenger)	~0.97	120	5
CuO CuBi ₂ O ₄ NiO ×	0.6 V	0.1M NaOH (pH 12.8)	~0.5	300	6
CuO CuBi ₂ O ₄	0 V	0.1 M Na ₂ SO ₄	~0.4	120	7
CuO CuBi ₂ O ₄ Pt	0.2 V	pH 6.8, 0.3 M K ₂ SO ₄ , 0.1 M phosphate, deaerated	0.05	10	8

Table S5 – Table detailing a comparison between key electrochemical parameters and stability of homologous systems from the present literature.

References

- 1. R. Gottesman, A. Song, I. Levine, M. Krause, A. N. Islam, D. Abou-Ras, T. Dittrich, R. van de Krol and A. Chemseddine, *Adv. Funct. Mater.*, **2020**, *30*, 1910832.
- 2. S. Wei, N. Xu, F. Li, X. Long, Y. Hu, L. Gao, C. Wang, S. Li, J. Ma and J. Jin, *ChemElectroChem*, **2019**, *6*, 3367–3374.
- 3. D. A. Reddy, Y. Kim, P. Varma, M. Gopannagari, K. A. J. Reddy, D. H. Hong, I. Song, D. P. Kumar and T. K. Kim, *ACS Appl. Energy Mater.*, **2022**, *5*, 6050–6058.
- 4. N. Nasori, A. Rubiyanto and E. Endarko, J. Phys.: Conf. Ser., 2019, 1373, 012016.
- 5. S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich and R. van de Krol, *Chem. Mater.*, **2016**, *28*, 4231–4242.
- 6. Q. Zhang, B. Zhai, Z. Lin, X. Zhao and P. Diao, *Int. J. Hydrogen Energy*, **2021**, *46*, 11607–11620.
- 7. S. Pulipaka, N. Boni, G. Ummethala and P. Meduri, J. Catal., 2020, 387, 17–27.
- 8. H. S. Park, C.-Y. Lee and E. Reisner, *Phys. Chem. Chem. Phys.*, **2014**, *16*, 22462–22465.