Supporting Information

Carbazolylpyridine (*cp*)-Based Tetradentate Platinum(II) Complexes Containing Fused 6/5/6 Metallocycles

Chengyao Zhang[#], Lijie Dou[#], Xia Wang[#], Kewei Xu, Jianqiang Chen, Feng Zhan,

Guijie Li*, Yun-Fang Yang*, Yuanbin She*

College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical

Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China

E-mail: guijieli@zjut.edu.cn; yangyf@zjut.edu.cn; sheyb@zjut.edu.cn

Table of Contents

1	General Information	S-3-S-4
3	Table S1. Crystal Data and Structure Refinement for Pt(cp-1)	S-5
3	Table S2. Crystal Data and Structure Refinement for Pt(cp-2)	S-6
4	Table S3. DFT calculations for Pt(II) complexes	S-7
5	Table S4. Selected bond lengths (Å), bond angles (°) and dihedra angles (°) for Pt(II) complexes based on the DFT calculations	S-8
6	Table S5–S8. TD-B3LYP/SV/SVP/def2-TZVP results of Pt(II) complexes at optimized S ₀ geometry	S-9-S-12
7	Figure S1. NTO analyses of <i>cp</i> -based Pt(II) complexes	S-13
8	Figure S2. Time-resolved photoluminescence attenuation fitting of <i>cp</i> -based Pt(II) complexes.	S-13
9	Detailed synthetic procedures of the Pt(II) complexes	S-14–S-21
10	¹ H, ¹³ C NMR spectra and H RMS	S-22-S-41
11	Cartesian coordinates of the structures	S-42-S-65
12	References	S-65

General Information.

Synthesis and Characterization. Unless noted, all commercial reagents were purchased and used as received without further purification. ¹H NMR spectra were recorded at 400 or 500 MHz, and ¹³C NMR spectra were recorded at 100 or 125 MHz NMR instruments in CDCl₃ or DMSO-*d*₆ solutions and chemical shifts were referenced to tetramethylsilane (TMS) or residual protiated solvent. If CDCl₃ was used as solvent, ¹H NMR spectra were recorded with TMS ($\delta = 0.00$ ppm) or CDCl₃ ($\delta = 7.26$ ppm) as internal references; ¹³C NMR spectra were recorded with TMS ($\delta = 0.00$ ppm) or CDCl₃ ($\delta = 7.26$ ppm) as internal references. If DMSO-*d*₆ was used as solvent, ¹H NMR spectra were recorded with TMS ($\delta = 0.00$ ppm) or CDCl₃ ($\delta = 7.26$ ppm) as internal references. If DMSO-*d*₆ ($\delta = 2.50$ ppm) as internal references; ¹³C NMR spectra were recorded with TMS ($\delta = 0.00$ ppm) or DMSO-*d*₆ ($\delta = 2.50$ ppm) as internal references. The following abbreviations (or combinations thereof) were used to explain ¹H NMR ultiplicities: s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, m = multiplet, br = broad. All of the new compounds were analyzed for HRMS on a Waters mass spectrometer using electrospray ionization in positive ion mode of ESI-Q-TOF.

DFT Calculations. The theoretical calculations of the Pt(II) complexes were performed using Gaussian 09. The molecular geometries of ground states (S₀) were optimized with the density functional theory (DFT) method. The DFT calculations were performed using a B3LYP function with a basis set of 6-31G(d) for C, H, O and N atoms and a LANL2DZ basis set for Pt atom.

Electrochemistry. Cyclic voltammetry and different pulsed voltammetry were performed using a CH1760E electrochemical analyzeraccording previous report. 0.1 M tetra-*n*-butylammonium hexafluorophosphate was used as the supporting electrolyte, anhydrous *N*,*N*-dimethylformamide, was used as the solvents for the E_{ox} and E_{red} measurements, and the solutions were bubbled with nitrogen for 15 min prior to the test. Silver wire, platinum wire and glassy carbon were used as pseudoreference electrode, counter electrode, and working electrode respectively. Scan rate was 300 mV/s. The redox potentials are based on the values measured from different pulsed voltammetry and are reported relative to an internal reference ferrocenium/ferrocene (Cp₂Fe/Cp₂Fe⁺). The reversibility of reduction or oxidation was determined using CV. As defined, if the magnitudes of the peak anodic and the peak cathodic current have an equal magnitude as scan speeds of 100 mV/s or slower, then the process is considered reversible; if the magnitudes of the peak anodic and the peak anodic currents are not equal,

but the return sweeps are nonzero, the process is considered quasi-reversible; otherwise, the process is considered irreversible.

Photophysical Measurements. The absorption spectra were measured on an Agilent 8453 UV–VS Spectrometer. Steady state emission experiments and lifetime measurements were performed on an Edinburgh FS5 Spectrofluorometer. Quantum efficiencies of the samples were measured using an Edinburgh FS5 Spectrofluorometer equipped with an integrating sphere.

X-ray Crystallography. X-ray diffraction data were collected at 170 K on a Bruker D8 Venture diffractometer using graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) from a rotating anode generator.

Table S1. Crystal Data and Structure Refinement for Pt(cp-1).

Identification code	240830_Pt_cp_1
Empirical formula	$C_{45}H_{42}N_4Pt$
Formula weight	833.91
Temperature/K	170.00
Crystal system	monoclinic
Space group	C2/c
a/Å	38.7590(18)
b/Å	19.3350(9)
c/Å	12.2485(6)
$\alpha/^{\circ}$	90
β/°	100.097(2)
$\gamma/^{\circ}$	90
Volume/Å ³	9036.9(7)
Z	8
$\rho_{calc}g/cm^3$	1.226
µ/mm ⁻¹	4.138
F(000)	3344.0
Crystal size/mm ³	$0.05 \times 0.03 \times 0.02$
Radiation	GaKa ($\lambda = 1.34139$)
2Θ range for data collection/°	7.488 to 121.746
Index ranges	$-50 \le h \le 50, -25 \le k \le 11, -15 \le l \le 15$
Reflections collected	38379
Independent reflections	10392 [$R_{int} = 0.0603, R_{sigma} = 0.0879$]
Data/restraints/parameters	10392/81/488
Goodness-of-fit on F ²	1.036
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0445, wR_2 = 0.1035$
Final R indexes [all data]	$R_1 = 0.0681, wR_2 = 0.1130$
Largest diff. peak/hole / e Å ⁻³	1.57/-1.43

Table S2. Crystal Data and Structure Refinement for Pt(cp-2).

Identification code	240830_Pt_cp_2
Empirical formula	$C_{45}H_{42}N_4Pt$
Formula weight	833.91
Temperature/K	170.00
Crystal system	triclinic
Space group	P-1
a/Å	12.2751(6)
b/Å	16.9466(7)
c/Å	19.2822(8)
$\alpha/^{\circ}$	80.219(2)
β/°	87.400(2)
γ/°	74.135(2)
Volume/Å ³	3802.2(3)
Z	4
$\rho_{calc}g/cm^3$	1.457
μ/mm^{-1}	4.917
F(000)	1672.0
Crystal size/mm ³	$0.05\times0.03\times0.01$
Radiation	GaKa ($\lambda = 1.34139$)
2Θ range for data collection/°	4.046 to 107.804
Index ranges	$-14 \le h \le 14, -20 \le k \le 20, -23 \le l \le 22$
Reflections collected	48123
Independent reflections	13879 [$R_{int} = 0.0739, R_{sigma} = 0.1460$]
Data/restraints/parameters	13879/174/979
Goodness-of-fit on F ²	0.799
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0425, wR_2 = 0.1131$
Final R indexes [all data]	$R_1 = 0.0604, \mathrm{wR}_2 = 0.1273$
Largest diff. peak/hole / e Å ⁻³	1.65/-1.02

^{*a*}Optimized S_0 were calculated using a B3LYP method with a basic set of 6-31G(d) for C, H, O and N atoms and a LANL2DZ basic set for Pt atoms.

<	Pt(C	$\sum_{i=1}^{N^{1}} \sum_{j=1}^{N^{2}} \sum_{i=1}^{N^{2}} \sum_{j=1}^{N^{2}} \sum_{j=1}^{N^{2}} \sum_{i=1}^{N^{2}} \sum_{i=1}^{N^{$		Pt($ \begin{array}{c} $		
	Pt(C	N ¹ Pt N ² C ¹ V ³ ZPyPhOPy)		Pt	N ¹ N ² C ¹ N ³ (CzPyCzPy)		
motal complaya	F	Pt(cp-3)	1	Dt N^2	Pt(<i>cp</i> -4)	13	$\mathbf{D}_{\mathbf{f}} = \mathbf{C}^{1}$
Pt(cn-1)	3	2 07	7	2.016	2 12	8	1 992
Pt(cn-2)		2.07	, 1	2.010	2.12	8	1.970
Pt(cp-3)		2.00	2	2.113	2.06	0	1.970
Pt(cp-4)		2.103	3	2.114	2.06	2	1.956
metal	$N^1 - Pt -$	$C^1 - Pt -$	N ³ –Pt–	N ² –Pt–	N1 D N3	\mathbf{C}^{1} \mathbf{D} \mathbf{M}^{2}	dihedral
complexes	\mathbf{C}^1	N^3	N^2	\mathbf{N}^1	$N^{-}Pt-N^{-}$	$C^{*}-Pt-N^{2}$	angle ^a
Pt(<i>cp</i> -1)	93.49	80.87	83.86	92.38	170.73	117.68	48.52
Pt(<i>cp</i> -2)	91.21	82.12	88.64	99.51	170.02	163.74	36.99
Pt(<i>cp</i> -3)	89.88	81.87	91.15	98.94	165.73	167.45	44.41
Pt(<i>cp</i> -4)	89.60	81.17	91.59	99.58	164.65	167.27	51.88

^aDihedral angle between terminal pyridine and carbazole planes. Optimized S_0 were calculated using a B3LYP method with a basic set of 6-31G(d) for C, H, O and N atoms and a LANL2DZ basic set for Pt atoms.

excited state	energy [eV]	wavelength [nm]	f	major contributions
S ₁	2.193	565	0.0433	$HOMO \rightarrow LUMO (99\%)$
S_2	2.596	478	0.0713	HOMO \rightarrow LUMO+1 (97%)
т	2.019	<i>c</i> 14	0.0000	$HOMO \rightarrow LUMO (85\%)$
11	2.018	014	0.0000	HOMO \rightarrow LUMO+1 (10%)
				$HOMO \rightarrow LUMO (11\%)$
T ₂	2.290	541	0.0000	HOMO \rightarrow LUMO+1 (62%)
				HOMO \rightarrow LUMO+2 (18%)
				HOMO-3 \rightarrow LUMO+2 (3%)
Т.	2 524	490	0.0000	HOMO-2 \rightarrow LUMO (6%)
13	2.534	489		HOMO \rightarrow LUMO+1 (19%)
				HOMO \rightarrow LUMO+2 (63%)
				HOMO-1 \rightarrow LUMO (23%)
T4	2.608	475	0.0000	HOMO-1 \rightarrow LUMO+1 (30%)
				HOMO-1 \rightarrow LUMO+2 (9%)
				HOMO-3 \rightarrow LUMO (8%)
T5	2.632	471	0.0000	HOMO-2 \rightarrow LUMO (48%)
				HOMO-1 \rightarrow LUMO+1 (11%)
T	2 750	440	0.0000	HOMO-3 \rightarrow LUMO (30%)
16	2.139	449	0.0000	HOMO-2 \rightarrow LUMO (18%)
				HOMO-3 \rightarrow LUMO (3%)
Τ ₇	2.934	423	0.0000	HOMO-1 \rightarrow LUMO (6%)
				HOMO \rightarrow LUMO+3 (75%)
				HOMO-3 \rightarrow LUMO (7%)
T ₈	2.954	420	0.0000	HOMO-1 \rightarrow LUMO (58%)
				HOMO-1 \rightarrow LUMO+1 (8%)

Table S5. TD-B3LYP/SV/SVP/def2-TZVP results of **Pt(cp-1)** at optimized S0 geometry.

excited state	energy [eV]	wavelength [nm]	f	major contributions
S ₁	2.230	556	0.0449	$HOMO \rightarrow LUMO (98\%)$
S ₂	2.603	476	0.0835	HOMO \rightarrow LUMO+1 (96%)
Τ.	2.016	615	0.0000	HOMO \rightarrow LUMO (81%)
1 I	2.010	015	0.0000	HOMO \rightarrow LUMO+1 (15%)
				HOMO-3 \rightarrow LUMO+1 (2%)
T ₂	2.270	546	0.0000	HOMO \rightarrow LUMO (15%)
				HOMO \rightarrow LUMO+1 (74%)
т	2.570	197	0.0000	HOMO-2 \rightarrow LUMO (5%)
13		482	0.0000	HOMO \rightarrow LUMO+2 (83%)
т	2 (45	460	0.0000	HOMO-3 \rightarrow LUMO (21%)
14	2.043	409	0.0000	HOMO-2 \rightarrow LUMO (31%)
Τ.	2668	165	0.0000	HOMO-1 \rightarrow LUMO (17%)
15	2.008	403	0.0000	HOMO-1 \rightarrow LUMO+1 (52%)
T.	2 9 1 2	441	0.0000	HOMO-3 \rightarrow LUMO (23%)
16	2.812	441	0.0000	HOMO-2 \rightarrow LUMO (37%)
Τ-	2 020	109	0.0000	HOMO-2 \rightarrow LUMO+1 (10%)
I 7	3.039	408	0.0000	HOMO-1 \rightarrow LUMO (60%)
T ₈				HOMO-2 \rightarrow LUMO (6%)
	3.081	402	0.0000	HOMO \rightarrow LUMO+3 (55%)
				HOMO \rightarrow LUMO+4 (7%)

Table S6. TD-B3LYP/SV/SVP/def2-TZVP results of Pt(cp-2) at optimized S₀ geometry.

excited state	energy [eV]	wavelength [nm]	f	major contributions
S ₁	2.213	560	0.0387	HOMO \rightarrow LUMO (98%)
S ₂	2.568	483	0.0817	$HOMO \rightarrow LUMO+1 (96\%)$
т	2,002	(10	0.0000	$HOMO \rightarrow LUMO (84\%)$
11	2.002	019	0.0000	HOMO \rightarrow LUMO+1 (12%)
				HOMO \rightarrow LUMO (13%)
T ₂	2.269	546	0.0000	HOMO \rightarrow LUMO+1 (58%)
				HOMO \rightarrow LUMO+2 (22%)
т	2 408	406	0.0000	$HOMO \rightarrow LUMO+1 (25\%)$
13	2.498	490	0.0000	HOMO \rightarrow LUMO+1 (68%)
	2.588			HOMO-1 \rightarrow LUMO (22%)
T4		479	0.0000	HOMO-1 \rightarrow LUMO+1 (41%)
				HOMO-1 \rightarrow LUMO+2 (18%)
т.	2 678	162	0.0000	HOMO-2 \rightarrow LUMO (52%)
15	2.078	403	0.0000	HOMO-2 \rightarrow LUMO+2 (15%)
				HOMO-2 \rightarrow LUMO (8%)
T ₆	2.940	422	0.0000	HOMO-1 \rightarrow LUMO (64%)
				HOMO-1 \rightarrow LUMO+1 (8%)
				HOMO-2 \rightarrow LUMO (7%)
T_7	3.033	409	0.0000	HOMO-1 \rightarrow LUMO (9%)
				HOMO \rightarrow LUMO+2 (50%)
				HOMO-2 \rightarrow LUMO (19%)
T ₈	3.101	400	0.0000	HOMO-2 \rightarrow LUMO+1 (11%)
				HOMO-2 \rightarrow LUMO+2 (17%)

Table S7. TD-B3LYP/SV/SVP/def2-TZVP results of **Pt(cp-3)** at optimized S0 geometry.

excited state	energy [eV]	wavelength [nm]	f	major contributions
S ₁	2.086	594	0.0427	HOMO \rightarrow LUMO (98%)
S ₂	2.495	497	0.0336	HOMO \rightarrow LUMO+1 (96%)
Т.	1 907	650	0.0000	$HOMO \rightarrow LUMO (90\%)$
11	1.907	050	0.0000	$HOMO \rightarrow LUMO+2 (4\%)$
Та	2 232	555	0.0000	HOMO \rightarrow LUMO+1 (30%)
12	2.232	555	0.0000	$HOMO \rightarrow LUMO+2 (58\%)$
				HOMO-2 \rightarrow LUMO (40%)
T ₃	2.418	513	0.0000	HOMO \rightarrow LUMO+1 (24%)
				$HOMO \rightarrow LUMO+1 (16\%)$
	2.424		0.0000	HOMO-2 \rightarrow LUMO (28%)
T4		512		HOMO \rightarrow LUMO+1 (39%)
				HOMO \rightarrow LUMO+2 (14%)
т.	2 500	470	0.0000	HOMO-1 \rightarrow LUMO (26%)
15	2.390	479	0.0000	HOMO-1 \rightarrow LUMO+2 (47%)
				HOMO-3 \rightarrow LUMO (27%)
Τ.	2.956	116	0.0000	HOMO-2 \rightarrow LUMO (13%)
16	2.830	440	0.0000	HOMO-1 \rightarrow LUMO (21%)
				HOMO \rightarrow LUMO+3 (14%)
т	2006	424	0.0000	HOMO-1 \rightarrow LUMO (29%)
17	2.880	454	0.0000	HOMO \rightarrow LUMO+3 (48%)
				HOMO \rightarrow LUMO (23%)
T ₈	3.101	430	0.0000	HOMO-1 \rightarrow LUMO+3 (22%)
				HOMO-3 \rightarrow LUMO+3 (26%)

Table S8. TD-B3LYP/SV/SVP/def2-TZVP results of Pt(cp-4) at optimized S₀ geometry.

Figure S1. Natural transition orbital (NTO) analyses of *cp*-based Pt(II) complexes.

Figure S2. Time-resolved photoluminescence attenuation fitting of *cp*-based Pt(II) complexes in PMMA.

Experimental Procedures

1-bpin¹, 2-bpin¹, 3-bpin² and 4-bpin³ were prepared according to previous reports.

Synthesis of *t*Bu*Cz-Br*: 3,6-di-*tert*-butyl-9*H*-carbazole (3.00 g, 10.74 mmol, 1.0 equiv), NBS (1.91 g, 10.74 mmol, 1.0 equiv) were added to a dry three-necked flask equipped with a magnetic stir bar. Then dichloromethane (30 mL) was added into the flask at room temperature. Then the flask was placed in an oil bath and the reaction mixture was stirred at room temperature for 24 hours, the reaction was monitored by TLC until the reaction was completed. The solvent was concentrated under reduced pressure and the residue was purified through column chromatography on silica gel (eluent: petroleum ether/dichloromethane = 30:1-10:1) to obtain the desired product as a white solid 3.5 g in 91% yield. ¹H NMR (500 MHz, DMSO-*d*₆): δ (ppm) 1.39 (d, *J* = 1.0 Hz, 18H), 7.45 (dd, *J* = 9.0, 0.5 Hz, 1H), 7.49 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.57 (d, *J* = 2.0 Hz, 1H), 8.17 (d, *J* = 2.0 Hz, 1H), 8.19 (d, *J* = 1.5 Hz, 1H), 11.10 (s, 1H).

Synthesis of *tBuCz-bpin: tBuCz-Br* (3.50 g, 9.77 mmol, 1.0 equiv), **OMBDB** (3.72 g, 14.65 mmol, 1.5 equiv), KOAc (2.40 g, 24.42 mmol, 2.5 equiv) and Pd(dppf)Cl₂ (143 mg, 0.20 mmol, 2 mol%) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then 1,4-dioxane (30 mL) was added into the flask under nitrogen atmosphere at room temperature. Then the flask was placed in an oil bath and the reaction mixture was stirred at 90 °C for 12 hours, the reaction was monitored by TLC until the reaction was completed. The reaction mixture was cooled down to room temperature, filtered and washed with ethyl acetate. The filtrate was concentrated under reduced pressure and the residue was purified through column chromatography on silica gel (eluent: petroleum ether/dichloromethane = 100:1) to obtain the desired product as a white solid 3.56 g in 90% yield. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 1.44 (s, 12H), 1.46 (s, 9H), 1.48 (s, 9H), 7.40 (d, *J* = 9.0 Hz, 1H), 7.47 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.89 (d, *J* = 2.0 Hz, 1H), 8.08 (d, *J* = 2.0 Hz, 1H), 8.08 (d, *J* = 2.0 Hz, 1H), 8.02 (d, *J* = 1.5 Hz, 1H), 8.97 (s, 1H).

Synthesis of 1-Br: tBuCz-bpin (3.10 g, 7.65 mmol, 1.0 equiv), 2,6-dibromopyridine (1.99 g, 8.41

mmol, 1.1 equiv), K₂CO₃ (2.11 g, 15.29 mmol, 2.0 equiv), Pd(PPh₃)₄ (177 mg, 0.15 mmol, 2 mol%) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then 1,4-dioxane (40 mL) and H₂O (10 mL) were added into the flask under nitrogen atmosphere at room temperature. Then the flask was placed in an oil bath and the reaction mixture was stirred and heated at 60 °C for 8 hours, the reaction was monitored by TLC until the reaction was completed. The reaction mixture was cooled down to room temperature, and diluted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, and concentrated under reduced pressure, then the residue was purified through column chromatography on silica gel (eluent: petroleum ether/dichloromethane = 30:1-20:1) to obtain the desired product as a white solid 2.00 g in 60% yield. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 1.47 (s, 9H), 1.51 (s, 9H), 7.41 (dd, *J* = 7.5, 0.5 Hz, 1H), 7.49 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.53 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.96 (d, *J* = 2.0 Hz, 1H), 8.00 (d, *J* = 7.5 Hz, 1H), 8.12 (t, *J* = 1.0 Hz, 1H), 8.21 (d, *J* = 1.0 Hz, 1H), 10.66 (s, 1H).

Synthesis of L(cp-1): 1-Br (278 mg, 0.64 mmol, 1.0 equiv), 1-bpin¹ (290 mg, 0.70 mmol, 1.1 equiv), Pd(pph₃)₄ (14.76 mg, 0.01 mmol, 2 mol%), K₂CO₃ (220 mg, 1.60 mmol, 2.5 equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then 1,4-dioxane (10 mL) and H₂O (2.5 mL) were added into the flask under nitrogen atmosphere at room temperature. Then the flask was placed in an oil bath and the reaction mixture was stirred and heated at 90 °C for 48 hours, the reaction was monitored by TLC until the reaction was completed. The reaction mixture was cooled down to room temperature, filtered and washed with ethyl acetate. The organic layer was separated and the aqueous layer was extracted with ethyl acetate two times. The combined organic layer was dried over anhydrous sodium sulfate, and concentrated under reduced

pressure, then the residue was purified through column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50:1-30:1) to obtain the desired product as a white solid 127 mg in 31% yield. ¹H NMR (500 MHz, DMSO-*d*₆): δ (ppm) 1.44 (s, 9H), 1.48 (s, 9H), 1.69 (s, 6H), 6.46 (dd, J = 8.0, 1.5 Hz, 1H), 7.03 (td, J = 7.5, 1.5 Hz, 1H), 7.07 (td, J = 7.5, 1.5 Hz, 1H), 7.22 (ddd, J = 7.5, 5.0, 1.0 Hz, 1H), 7.43 (d, J = 2.0 Hz, 1H), 7.51 (dd, J = 9.0, 2.0 Hz, 1H), 7.55 (d, J = 8.5 Hz, 2H), 7.56 (dd, J = 8.0, 2.0 Hz, 1H), 7.72 (d, J = 2.0 Hz, 2H), 7.75 (dd, J = 4.5, 2.0 Hz, 1H), 7.77 (td, J = 7.5, 2.0 Hz, 1H), 7.95 (d, J = 1.5 Hz, 1H), 8.0 (t, J = 7.5 Hz, 1H), 8.07 (d, J = 7.5 Hz, 1H), 8.24 (d, J = 1.5 Hz, 1H), 8.31–8.32 (m, 1H), 8.46 (ddd, J = 5.0, 2.5, 1.0 Hz, 1H), 10.94 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 30.24, 32.09, 32.15, 34.72, 34.81, 36.61, 110.88, 115.41, 115.96, 116.91, 117.80, 118.17, 118.34, 119.60, 120.59, 120.68, 121.74, 121.86, 122.17, 122.45, 123.63, 124.73, 124.90, 125.53, 126.41, 133.16, 134.26, 137.20, 137.26, 138.20, 138.51, 139.28, 140.46, 141.00, 141.34, 141.87, 150.55, 155.21, 156.87, 157.83. HRMS (ESI): calcd for C₄₅H₄₅N₄ [M+H]⁺ 641.3639, found 641.3621.

Synthesis of Pt (cp-1): L (cp-1) (80 mg, 0.12 mmol, 1.0 equiv), K₂PtCl₄ (54.40 mg, 0.13 mmol, 1.05 equiv), *n*-Bu₄NBr (4.02 mg, 0.01 mmol, 10 mol%) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then AcOH (10 mL) was added into the flask under nitrogen atmosphere at room temperature. The reaction mixture was bubbled with nitrogen for 30 minutes and then stirred at room temperature for 12 h. Then the flask was placed in an oil bath and the reaction mixture was stirred and heated at 120 °C for 48 hours. The reaction mixture was cooled down to room temperature, filtered and washed with dichloromethane. The filtrate was concentrated under reduced pressure and the residue was purified through column chromatography on silica gel (eluent: petroleum ether/dichloromethane = 3:1-2:1) to obtain the desired product as a red solid 90.57 mg in 87% yield. ¹H NMR (500 MHz, DMSO- d_6): δ (ppm) 1.34 (s, 3H), 1.42 (s, 9H), 1.57 (s, 9H), 1.96 (s, 3H), 6.90–6.93(m, 1H), 7.07 (d, J = 8.5 Hz, 1H), 7.24 (dd, J = 8.5, 2.0 Hz, 1H), 7.30 (dd, J = 7.0, 1.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.38 (td, J = 7.5, 1.5 Hz, 1H), 7.53 (dd, J = 7.5, 0.5 Hz, 1H), 7.62 (d, J = 10.5 Hz, 1H), 7.64 (dd, J = 7.5, 1.0 Hz, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.97–8.00 (m, 1H), 8.19 (dd, J = 8.0, 1.0 Hz, 1H), 8.26 (d, J = 2.0 Hz, 1H), 8.29 (t, J = 8.0 Hz, 1H), 8.48 (d, J = 1.0 Hz, 1H), 8.48 (d, J = 1H), 8.50 (d, J = 1.5 Hz, 1H), 8.76 (dd, J = 6.0, 1.5 Hz, 1H), 8.81(d, J = 8.0 Hz, 1H). ¹³C NMR (125) MHz, CDCl₃): δ (ppm) 22.88, 32.18, 32.39, 32.56, 34.59, 34.86, 36.94, 115.17, 115.49, 115.75, 117.44, 118.01, 118.25, 119.57, 119.80, 120.04, 120.13, 120.86, 121.74, 122.04, 124.13, 124.86, 125.71, 126.66, 127.11, 134.39, 134.82, 135.64, 137.12, 137.22, 137.93, 139.15, 140.13, 140.72, 140.89, 143.38, 147.13, 152.20, 153.14, 156.68, 166.92. HRMS (ESI): calcd for $C_{45}H_{43}N_4Pt [M+H]^+ 834.3130$, found 834.3116.

Scheme 3:

Synthesis of L (cp-2): 1-Br (300 mg, 0.69 mmol, 1.0 equiv), 2-bpin¹ (313 mg, 0.76 mmol, 1.1 equiv), Pd(pph₃)₄ (16 mg, 0.01 mmol, 2 mol%), K₂CO₃ (238 mg, 1.72 mmol, 2.5 equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then 1,4dioxane (8 mL) and H₂O (2 mL) were added into the flask under nitrogen atmosphere at room temperature. Then the flask was placed in an oil bath and the reaction mixture was stirred and heated at 90 °C for 48 hours, the reaction was monitored by TLC until the reaction was completed. The reaction mixture was cooled down to room temperature, filtered and washed with ethyl acetate. The organic layer was separated and the aqueous layer was extracted with ethyl acetate two times. The combined organic layer was dried over anhydrous sodium sulfate, and concentrated under reduced pressure, then the residue was purified through column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50:1-30:1) to obtain the desired product as a white solid 203 mg in 46% yield. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 1.37 (s, 9H), 1.44 (s, 9H), 1.60 (s, 6H), 6.39 (dd, J = 9.5, 2.5 Hz, 1H), 6.62 (d, J = 10.5 Hz, 1H), 6.80 (dd, J = 9.5, 6.0 Hz, 1H), 6.96 (td, J = 6.0, 3.5 Hz, 1H), 6.99 (td, J = 9.0, 2.5 Hz, 1H), 7.20 (dd, J = 10.5, 2.5 Hz, 1H), 7.43 (dd, J = 8.0, 1.5 Hz, 1H), 7.45 (dd, *J* = 9.5, 1.5 Hz, 1H), 7.61 (d, *J* = 5.5 Hz, 1H), 7.63 (dd, *J* = 7.5, 2.5 Hz, 1H), 7.74 (t, *J* = 9.5 Hz, 1H), 7.61 (d, *J* = 9.5 Hz, 1H), 7.63 (dd, *J* = 7.5, 2.5 Hz, 1H), 7.74 (t, *J* = 9.5 Hz, 1H), 7.61 (d, *J* = 9.5 Hz, 1H), 7.63 (dd, *J* = 7.5, 2.5 Hz, 1H), 7.74 (t, *J* = 9.5 Hz, 1H), 7.61 (d, *J* = 9.5 Hz, 1H), 7.63 (dd, *J* = 7.5, 2.5 Hz, 1H), 7.74 (t, *J* = 9.5 Hz, 1H), 7.61 (d, *J* = 9.5 Hz, 1H), 7.63 (dd, *J* = 7.5, 2.5 Hz, 1H), 7.74 (t, *J* = 9.5 Hz, 1H), 7.61 (d, J = 9.5 Hz, 1H), 7 1H), 7.81 (t, J = 9.5 Hz, 1H), 7.94 (d, J = 10.5 Hz, 1H), 7.96 (d, J = 2.5 Hz, 1H), 7.99 (dd, J = 6.0, 2.0 Hz, 2H), 8.08–8.10 (m, 2H), 8.12 (dt, *J*=10.0, 2.0 Hz, 1H), 11.11 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 31.07, 32.05, 32.14, 34.63, 34.80, 36.32, 110.50, 115.14, 115.89, 116.69, 118.03, 118.20, 118.48, 119.28, 120.69, 121.60, 122.34, 123.56, 124.81, 124.97, 125.16, 126.28, 127.01, 129.34, 130.09, 130.73, 131.94, 133.11, 137.17, 137.51, 138.12, 140.91, 141.38, 141.59, 141.78, 142.34, 145.67, 151.71, 155.81, 158.00. HRMS (ESI): calcd for C₄₅H₄₅N₄ [M+H]⁺ 641.3639, found 641.3628.

Synthesis of Pt (cp-2): A mixture of L(cp-2) (100 mg, 0.16 mmol, 1.0 equiv), K₂PtCl₄ (68 mg, 0.16 mmol, 1.05 equiv), *n*-Bu₄NBr (5.03 mg, 0.02 mmol, 10 mol%) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then AcOH (10 mL) was added into the flask under nitrogen atmosphere at room temperature. The reaction mixture was bubbled with nitrogen for 30 minutes and then stirred at room temperature for 12 h. Then the flask was placed in an oil bath and the reaction mixture was stirred and heated at 120 °C for 48 hours. The reaction mixture was cooled down to room temperature, filtered and washed with dichloromethane. The filtrate was concentrated under reduced pressure and the residue was purified through column chromatography on silica gel (eluent: petroleum ether/dichloromethane = 3:1-2:1) to obtain the desired product as a orange solid 104 mg in 80% yield. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 1.39 (s, 3H), 1.40 (s, 9H), 1.60 (s, 9H), 2.00 (s, 3H), 6.67 (dd, J = 9.5, 7.5 Hz, 1H), 6.82 (d, J = 11.0 Hz, 1H), 7.04 (dd, J = 11.0, 2.5 Hz, 1H), 7.16 (s, 1H), 7.17 (d, J = 2.5 Hz, 1H), 7.26–7.29 (m, 2H), 7.47–7.49 (m, 1H), 7.54–7.59 (m, 2H), 7.87–7.90 (m, 2H), 8.10 (t, J = 9.5 Hz, 1H), 8.18 (d, J = 2.0 Hz, 1H), 8.42 (s, 1H), 8.44 (d, J = 2.5 Hz, 1H), 8.57 (d, J = 10.0 Hz, 1H), 8.82 (dd, J = 8.0, 2.0 Hz, 1H). HRMS (ESI): calcd for C₄₅H₄₃N₄Pt [M+H]⁺834.3130, found 834.3110.

Scheme 4:

Synthesis of L(cp-3): 1-Br (300 mg, 0.69 mmol, 1.0 equiv), 3-bpin² (224 mg, 0.76 mmol, 1.1 equiv), K₂CO₃ (238 mg, 1.72 mmol, 2.5 equiv), Pd(PPh₃)₄ (16 mg, 0.01 mmol, 2 mol%) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then 1,4-

dioxane (10 mL) and H₂O (2.5 mL) were added into the flask under nitrogen atmosphere at room temperature. Then the flask was placed in an oil bath and the reaction mixture was stirred and heated at 90 °C for 48 hours, the reaction was monitored by TLC until the reaction was completed. The reaction mixture was cooled down to room temperature, filtered and washed with ethyl acetate. The organic layer was separated and the aqueous layer was extracted with ethyl acetate two times. The combined organic layer was dried over anhydrous sodium sulfate, and concentrated under reduced pressure, then the residue was purified through column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50:1-30:1) to obtain the desired product as a white solid 109 mg in 30% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.46 (s, 9H), 1.53 (s, 9H), 7.02 (dd, J = 7.2, 0.8 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 7.24–7.26 (m, 1H), 7.30 (ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 7.45 (dd, J = 1.002.0, 8.4 Hz, 1H), 7.62 (t, J = 8.0 Hz, 1H), 7.64 (dd, J = 7.6, 0.4 Hz, 1H), 7.73 (ddd, J = 2.0, 7.6, 8.4 Hz, 1H), 7.88 (t, J = 2.4 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.95 (ddd, J = 7.6, 1.6, 1.2 Hz, 1H), 8.01 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 1.6 Hz, 1H), 8.12 (d, J = 2.0 Hz, 1H), 8.19 (d, J = 1.6 Hz, 1H), 8.23(ddd, J = 4.8, 2.0, 0.8 Hz, 1H), 11.12 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 32.06, 32.14, 34.69, 34.82, 110.46, 111.78, 116.10, 118.01, 118.43, 118.63, 118.72, 119.49, 119.87, 120.84, 121.97, 122.54, 123.28, 123.64, 124.79, 130.26, 137.18, 137.52, 138.18, 139.55, 141.49, 141.92, 142.03, 147.83, 154.91, 156.04, 158.08, 163.72. HRMS (ESI): calcd for C₃₆H₃₆N₃O [M+H]⁺ 526.2853, found 526.2841.

Synthesis of **Pt** (*cp*-3): A mixture of **L** (*cp*-3) (100 mg, 0.19 mmol, 1.0 equiv), K₂PtCl₄ (83 mg, 0.20 mmol, 1.05 equiv), *n*-Bu₄NBr (6.13 mg, 0.02 mmol, 10 mol%) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then AcOH (20 mL) was added into the flask under nitrogen atmosphere at room temperature. The reaction mixture was bubbled with nitrogen for 30 minutes and then stirred at room temperature for 12 h. Then the flask was placed in an oil bath and the reaction mixture was stirred and heated at 120 °C for 48 hours. The reaction mixture was cooled down to room temperature, filtered and washed with dichloromethane. The filtrate was concentrated under reduced pressure and crude product was recrystallized with dichloromethane/ethyl acetate obtain the desired product as a yellow solid 63 mg in 46% yield. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 1.45 (s, 9H), 1.59 (s, 9H), 6.65–6.68 (m, 1H), 6.99 (d, *J* = 9.0 Hz, 1H), 7.18 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.19 (dd, *J* = 12.0, 0.5 Hz, 1H), 7.27 (t, *J* = 7.5 Hz, 1H), 7.36 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.60

(d, J = 7.5 Hz, 1H), 7.82 (dd, J = 7.5, 1.0 Hz, 1H), 7.86–7.90 (m, 1H), 8.05 (t, J = 7.5 Hz, 1H), 8.20 (d, J = 2.0 Hz, 1H), 8.32 (d, J = 1.0 Hz, 1H), 8.43 (d, J = 1.5 Hz, 1H), 8.44 (s, 1H), 8.75 (dd, J = 6.0, 1.5 Hz, 1H). HRMS (ESI): calcd for C₃₆H₃₄N₃OPt [M+H]⁺ 719.2344, found 719.2330.

Synthesis of L(cp-4): 1-Br (300 mg, 0.69 mmol, 1.0 equiv), 4-bpin³ (281 mg, 0.76 mmol, 1.1 equiv), K₂CO₃ (238 mg, 1.72 mmol, 2.5 equiv), Pd(PPh₃)₄ (16 mg, 0.01 mmol, 2 mol%) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then 1,4dioxane (8 mL) and H₂O (2 mL) were added into the flask under nitrogen atmosphere at room temperature. Then the flask was placed in an oil bath and the reaction mixture was stirred and heated at 90 °C for 48 hours, the reaction was monitored by TLC until the reaction was completed. The reaction mixture was cooled down to room temperature, filtered and washed with ethyl acetate. The organic layer was separated and the aqueous layer was extracted with ethyl acetate two times. The combined organic layer was dried over anhydrous sodium sulfate, and concentrated under reduced pressure, then the residue was purified through column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50:1-30:1) to obtain the desired product as a white solid 161 mg in 39% yield. ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) 1.44 (s, 9H), 1.49 (s, 9H), 7.31 (d, J = 8.8 Hz, 1H), 7.34 (ddd, J = 6.4, 5.6, 1.2 Hz, 1H), 7.37–7.41 (m, 1H), 7.46 (dd, J = 8.8, 2.0 Hz, 1H), 7.50–7.54 (m, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.87 (td, J = 7.2, 2.0 Hz, 1H), 7.99 (dt, J = 8.0, 0.8 Hz, 1H), 8.04 (d, J = 1.6 Hz, 1H), 8.07 (d, J = 4.0 Hz, 1H), 8.09 (d, J = 2.0 Hz, 1H), 8.11–8.15 (m, 1H), 8.16 (dd, J = 2.0 Hz, 1H), 8.10 (dd, J = 2.0 Hz, 1H), 8.11–8.15 (m, 1H), 8.16 (dd, J = 2.0 Hz, 1H), 8.11–8.15 (m, 1H), 8.16 (dd, J = 2.0 Hz, 1H), 8.11–8.15 (m, 1H), 8.16 (dd, J = 2.0 Hz, 1H), 8.11–8.15 (m, 1H), 8.16 (dd, J = 2.0 Hz, 1H), 8.11–8.15 (m, 1H), 8.16 (dd, J = 2.0 Hz, 1H), 8.11–8.15 (m, 1H), 8.16 (dd, J = 2.0 Hz, 1H), 8.11–8.15 (m, 1H), 8.16 (dd, J = 2.0 Hz, 1H), 8.11–8.15 (m, 1H), 8.16 (dd, J = 2.0 Hz, 1H), 8.11–8.15 (m, 1H), 8.16 (dd, J = 2.0 Hz, 1H), 8.11–8.15 (m, 1H), 8.16 (dd, J = 2.0 Hz, 1H), 8.11–8.15 (m, 1H), 8.16 (dd, J = 2.0 Hz, 1H), 8.11–8.15 (m, 1H), 8.16 (dd, J = 2.0 Hz, 1H), 8.10 (m, 1H), 8.16 (m, 1H), 8 8.4, 1.6 Hz, 1H), 8.24 (d, J = 1.6 Hz, 1H), 8.32 (t, J = 2.0 Hz, 1H), 8.35 (d, J = 7.6 Hz, 1H), 8.45 (d, J = 8.4 Hz, 1H), 8.61 (ddd, J = 4.8, 2.0, 0.8 Hz, 1H), 8.77 (d, J = 0.8 Hz, 1H), 11.22 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 32.08, 32.17, 34.70, 34.84, 109.94, 110.56, 111.22, 116.00, 117.89, 118.07, 118.59, 118.97, 119.63, 120.01, 120.54, 120.57, 120.73, 121.18, 121.48, 122.48, 123.66, 123.96, 124.78, 125.00, 126.66, 137.28, 137.43, 138.14, 138.42, 138.51, 140.34, 141.47, 141.87, 149.85,

151.61, 157.26, 157.91. HRMS (ESI): calcd for C₄₂H₃₉N₄ [M+H]⁺ 599.3169, found 599.3165.

Synthesis of Pt (cp-4): A mixture of L (cp-4) (100 mg, 0.19 mmol, 1.0 equiv), K₂PtCl₄ (83 mg, 0.20 mmol, 1.05 equiv), n-Bu₄NBr (6.13 mg, 0.02 mmol, 10 mol%) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then AcOH (10 mL) was added into the flask under nitrogen atmosphere at room temperature. The reaction mixture was bubbled with nitrogen for 30 minutes and then stirred at room temperature for 12 h. Then the flask was placed in an oil bath and the reaction mixture was stirred and heated at 120 °C for 48 hours. The reaction mixture was cooled down to room temperature, filtered and washed with dichloromethane. The filtrate was concentrated under reduced pressure and crude product was recrystallized with dichloromethane/ethyl acetate obtain the desired product as orange solid 86 mg in 65% yield. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 1.47 (s, 9H), 1.60 (s, 9H), 6.64–6.67 (m, 1H), 7.25–7.26(m, 1H), 7.34 (d, J = 8.5 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.53-7.56 (m, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H)7.0 Hz, 1H), 7.86–7.90 (m, 1H), 8.02 (t, J = 8.0 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 8.11 (d, J = 7.0 Hz, 1H), 8.21 (d, J = 8.5 Hz, 1H), 8.24 (d, J = 1.5 Hz, 1H), 8.35 (s, 1H), 8.39 (d, J = 8.0 Hz, 1H), 8.45 (d, J = 1.5 Hz, 1H), J = 1.5 Hz, 1H), 9.23 (dd, J = 6.5, 1.5 Hz, 1H). HRMS (ESI): calcd for C₄₂H₃₇N₄Pt [M+H]⁺ 792.2661, found 792.2646.

S-23 / S-65

ì Ì.

НŃ

L(cp-1) ¹³C NMR (125 MHz, CDCl₃) 2

2

Ì.

Spectrum from 0531-1.wiff2 (sample 2) - LCP-1, +TOF MS (100 - 800) from 0.212 to 0.231 ... trum from 0531-1.wiff2 (sample 2) - LCP-1, +TOF MS (100 - 800) from 0.004 to 0.050 min]

Spectrum from 0108.wiff2 (sample 3) - ZCY-Pt2, +TOF MS (300 - 1500) from 0.189 to 0.221 min

155.81 155.81 155.81 145.67 145.67 141.78 1441.78 1441.78 1441.78 1441.78 1441.78 1441.78 1441.78 1441.78 1441.78 1441.78 133.17 133.17 133.17 133.17 133.17 133.17 133.17 133.17 133.17 133.17 133.17 122.34 112.35 112.55 112.55 112.55 112.55 112.55 112.55 112.55 112.55 112.55 1115.55 115.55 115.55 115.55 115.55 115.55 115.5

l

										,				,	,			
200	190	180 170	160 150	140	130	120	110	100 δ(ppm)	90	80	70	60	50	40	30	20	10	0
— 158.00	— 155.81	— 151.71	— 145.67	∫ _r 142.34	141.59	138.12 137.51	× 137.17	~ 133.11	 131.94 130.73 120.00 	129.34	 127.01 126.28 125.16 	124.97	 123.56 122.34 121.60 	- 120.69 / 119.28 / 118.48	 118.20 118.03 116.69 	~115.89 ~115.14		— 110.50

8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 δ(ppm)

166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 δ(ppm) Spectrum from 0531-1.wiff2 (sample 4) - LCP-3, +TOF MS (100 - 800) from 0.152 to 0.171 ... trum from 0531-1.wiff2 (sample 4) - LCP-3, +TOF MS (100 - 800) from 0.004 to 0.050 min]

1.01 1.15 1 1.00-1.00-1.00-1.02 1.50 1.03-0.05 0.84 1.03 42 8.0 δ(ppm) 7.2 7.9 7.7 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 7.8 7.6 7.5 7.4 7.3

S-38 / S-65

Cartesian coordinates of the structures

Pt(cp-1)_S₀

С	4.57388600	2.19102600	0.28968000
С	1.89621200	2.50751200	1.13305800
С	3.66706900	1.12751600	0.18447400
С	4.16499100	3.42126500	0.80962700
С	2.81787900	3.54291400	1.23450000
С	2.30883500	1.28601000	0.57846400
Н	2.48457400	4.47913200	1.67497600
Н	0.88135700	2.63598900	1.49871700
С	3.79328700	-0.25221200	-0.22132400
С	3.42784800	-2.95877700	-0.61980800
С	4.84559500	-1.02000200	-0.71279500
С	2.49974100	-0.82665500	-0.00642100
С	2.34058000	-2.23173900	-0.09362800
С	4.66336300	-2.38820500	-0.96848900
Н	5.80446100	-0.54688600	-0.89728100
Н	3.29975200	-4.02506600	-0.77304100
Ν	1.58547800	0.11299700	0.38122900
Н	5.60179800	2.03845500	-0.02351600
С	5.11483500	4.62495100	0.95701500
С	6.53613300	4.31635500	0.44826800
Н	6.99942900	3.49652000	1.00891800
Н	7.17337900	5.20045800	0.56819400
Н	6.53850900	4.04755300	-0.61436000
С	5.21967200	5.02994700	2.44693800
Н	5.62111100	4.20523900	3.04691500
Н	4.24461900	5.30086400	2.86535900
Н	5.88574400	5.89433600	2.56550000
С	4.56729600	5.82125100	0.14186500

Н	3.56876800	6.11975800	0.47893000
Н	4.49835500	5.56782900	-0.92257900
Н	5.22757200	6.69228100	0.24239500
С	5.76426400	-3.27684300	-1.58104100
С	7.05120000	-2.48444300	-1.88226700
Н	7.48920600	-2.05648500	-0.97316400
Н	6.86983400	-1.66807100	-2.59069100
Н	7.79998900	-3.14947800	-2.32799700
С	6.12909400	-4.42069900	-0.60445700
Н	6.49620000	-4.01979800	0.34727300
Н	6.91426300	-5.05712800	-1.03206800
Н	5.26786800	-5.06180700	-0.38644600
С	5.25673400	-3.88501100	-2.91036700
Н	4.35959400	-4.49553000	-2.76110600
Н	6.02593400	-4.52536000	-3.36090500
Н	5.00528000	-3.09671600	-3.62920700
С	1.19923800	-2.94316700	0.50001700
С	-0.92780300	-4.35562200	1.63255800
С	1.36803900	-4.27109000	0.95108800
Ν	-0.00979100	-2.34030600	0.68962400
С	-1.07620700	-3.04028600	1.20420500
С	0.31695400	-4.96903700	1.51823700
Н	2.34608400	-4.72701200	0.88378300
Н	0.46316400	-5.98670300	1.86946100
Н	-1.77782300	-4.89196100	2.03648700
Ν	-3.59748300	0.81150400	-0.42077100
С	-2.57365800	1.72873100	-0.63802600
С	-0.65594500	3.57015300	-1.44664900
С	-2.94161200	3.05315800	-0.98126800

Ν	-1.25246100	1.39893900	-0.55038700
С	-0.34213500	2.30131500	-1.00638800
С	-1.99418000	3.97161900	-1.38354300
Н	-3.98826000	3.32390700	-0.93582100
Н	0.67902600	1.95722100	-0.99401700
Н	0.13439400	4.22726600	-1.79022200
Pt	-0.50110100	-0.40499200	0.18037200
Н	-2.29217400	4.98343200	-1.64286400
С	-4.81371300	0.93402400	-1.17595900
С	-7.18621200	1.02269200	-2.64761200
С	-4.79255500	1.30060800	-2.52884100
С	-6.02038700	0.56320800	-0.55682700
С	-7.19666700	0.61439100	-1.31445000
С	-5.97719000	1.35999000	-3.25718300
Н	-3.84838500	1.53023300	-3.01084200
Н	-8.13879100	0.32813300	-0.86043600
Н	-5.94860800	1.64788500	-4.30429000
Н	-8.11486600	1.06007700	-3.20990100
С	-2.35214100	-2.31792700	1.18704200
С	-4.71867000	-0.81336200	0.98566300
С	-3.54098600	-2.80034400	1.74380400
С	-2.32583500	-1.07187000	0.51730100
С	-3.52214700	-0.37215900	0.38258600
С	-4.70514000	-2.04160100	1.65696400
Н	-3.57066300	-3.75160400	2.26742400
Н	-5.60971100	-2.41674000	2.12104300
С	-5.95440100	0.09119300	0.89749500
С	-5.75339700	1.31801200	1.83483700
Н	-6.61257100	1.99498600	1.76048700

Н	-4.85105200	1.88117600	1.58260300
Н	-5.66343800	0.98493500	2.87480000
С	-7.24170300	-0.62580900	1.33582500
Н	-7.45407500	-1.50588300	0.71954700
Н	-8.09932200	0.05183300	1.27671600
Н	-7.16519200	-0.94571800	2.37936400
Pt(cp-1)_ T ₁			
С	4.47639900	2.28034400	0.31996500
С	1.74855800	2.49775600	1.05133700
С	3.62344200	1.19005600	0.17083200
С	3.98933600	3.49405100	0.83880700
С	2.62457200	3.56709900	1.20884200
С	2.24467300	1.30504500	0.50969300
Н	2.23942400	4.48568800	1.64086800
Н	0.71199600	2.57626000	1.36278700
С	3.81696900	-0.19349500	-0.23572400
С	3.54771700	-2.91366300	-0.64227100
С	4.92344600	-0.91672500	-0.66787300
С	2.54928900	-0.81321400	-0.07059100
С	2.40913100	-2.22535500	-0.12625400
С	4.77374900	-2.30327500	-0.92140100
Н	5.87276600	-0.41864800	-0.82192800
Н	3.44928900	-3.97662500	-0.82590800
Ν	1.58038800	0.11298600	0.26238900
Н	5.52065600	2.18084300	0.04512200
С	4.88799000	4.72905600	1.02929800
С	6.33794500	4.48019800	0.57124100
Н	6.81517000	3.67702300	1.14407200
Н	6.93155100	5.38911600	0.72075200

Н	6.39093800	4.22183300	-0.49251100
С	4.91860400	5.11931800	2.52727100
Н	5.32711300	4.30421900	3.13533800
Н	3.91979000	5.35286300	2.90995000
Н	5.54917900	6.00455400	2.67620400
С	4.32120500	5.91010700	0.20418300
Н	3.30212600	6.16963800	0.50914500
Н	4.29932200	5.66613200	-0.86425900
Н	4.94664800	6.80151100	0.33646200
С	5.92643200	-3.15535300	-1.48814900
С	7.20121600	-2.32656600	-1.74120200
Н	7.59209100	-1.88552400	-0.81709900
Н	7.02594500	-1.51788700	-2.45982000
Н	7.98406300	-2.97241900	-2.15486800
С	6.28186100	-4.28432300	-0.49041000
Н	6.59505600	-3.87015500	0.47477000
Н	7.10546900	-4.89368400	-0.88283400
Н	5.43218600	-4.95017200	-0.30827000
С	5.48763700	-3.78110900	-2.83425100
Н	4.60924100	-4.42400300	-2.71829300
Н	6.29810000	-4.39162600	-3.25172300
Н	5.23681900	-3.00305300	-3.56428100
С	1.28532800	-2.94145700	0.45446400
С	-0.82948900	-4.37757900	1.58542900
С	1.46531700	-4.26038600	0.90127200
Ν	0.04797600	-2.32427000	0.65315800
С	-1.01301000	-3.07535000	1.16188800
С	0.43440300	-4.98367800	1.48457500
Н	2.44988600	-4.70428700	0.81836600

Н	0.59978300	-5.99219300	1.84914200
Н	-1.67297400	-4.93138000	1.98271900
Ν	-3.60440300	0.76086900	-0.40337200
С	-2.59415100	1.68425400	-0.65682500
С	-0.72796500	3.51153600	-1.59554400
С	-2.97790300	3.00846800	-0.97224000
Ν	-1.26638200	1.34602400	-0.63448700
С	-0.38914600	2.24757700	-1.16963700
С	-2.05858900	3.92760700	-1.43799500
Н	-4.02085300	3.27753800	-0.86411800
Н	0.63013900	1.90134500	-1.23415500
Н	0.03754300	4.15978900	-2.00693300
Pt	-0.47952800	-0.43168000	0.13224600
Н	-2.36742800	4.94078600	-1.67634300
С	-4.83848500	0.87770600	-1.13081000
С	-7.24185500	0.95566900	-2.55400300
С	-4.84787500	1.24847100	-2.48310300
С	-6.03019300	0.49729300	-0.48874600
С	-7.22220500	0.54406800	-1.22222200
С	-6.04705500	1.30170200	-3.18724800
Н	-3.91539400	1.48648200	-2.98323100
Н	-8.15285200	0.25133100	-0.74876500
Н	-6.04124000	1.59204000	-4.23413800
Н	-8.18214500	0.98964900	-3.09704200
С	-2.29653200	-2.38128500	1.15273600
С	-4.68879600	-0.88562800	1.00284400
С	-3.48359100	-2.88181000	1.70230000
С	-2.29552500	-1.11416200	0.51428000
С	-3.49887900	-0.42298000	0.39275500

С	-4.65317100	-2.12906400	1.64228800
Н	-3.50307400	-3.84645500	2.20094600
Н	-5.54941700	-2.52291000	2.10833600
С	-5.92720500	0.01617700	0.95933200
С	-5.71238200	1.23710700	1.90108000
Н	-6.57592700	1.91147800	1.85262800
Н	-4.81849000	1.80661700	1.63286200
Н	-5.59620500	0.89566800	2.93582900
С	-7.20030300	-0.71038700	1.42249500
Н	-7.42526400	-1.58413300	0.80164900
Н	-8.06194500	-0.03551200	1.39371200
Н	-7.09445500	-1.04289100	2.45960700
Pt(cp-2)_ S ₀			
С	-4.07561600	2.67041400	-0.21577100
С	-1.41908800	2.52085900	-1.16425700
С	-3.36049200	1.46854100	-0.13563100
С	-3.48326200	3.81160300	-0.76244900
С	-2.15330500	3.69902500	-1.23951900
С	-2.01308400	1.39012400	-0.58369300
Н	-1.68096700	4.56339600	-1.69914100
Н	-0.41199400	2.47232600	-1.56845600
С	-3.70436700	0.13232400	0.29238600
С	-3.78795800	-2.59708800	0.72391500
С	-4.84601900	-0.44204700	0.83323100
С	-2.53526300	-0.65836100	0.03440100
С	-2.61289100	-2.06708700	0.14093000
С	-4.88989900	-1.82316900	1.10608500
Н	-5.70791000	0.18480600	1.04931000
Н	-3.82703800	-3.66542500	0.89263900

Ν	-1.49306200	0.11082100	-0.40086200
Н	-5.10102100	2.69636100	0.13873300
С	-4.21960700	5.15972200	-0.87992500
С	-5.65361600	5.09405600	-0.32102900
Н	-6.26826100	4.36656800	-0.86338500
Н	-6.13599300	6.07368500	-0.41971700
Н	-5.66380500	4.82477700	0.74142900
С	-4.30568800	5.58240900	-2.36632200
Н	-4.85603400	4.83712900	-2.95184900
Н	-3.31346200	5.69207300	-2.81649700
Н	-4.82472800	6.54462400	-2.46408300
С	-3.44839800	6.24290600	-0.08769200
Н	-2.42591600	6.36747100	-0.46028700
Н	-3.38679400	5.97898000	0.97463100
Н	-3.95361800	7.21399500	-0.16840900
С	-6.13878000	-2.42755500	1.77675500
С	-7.38255900	-2.17066600	0.89235600
Н	-7.26736200	-2.64241800	-0.09039300
Н	-7.55348500	-1.10134000	0.72945000
Н	-8.28305200	-2.58274500	1.36537300
С	-6.01847600	-3.94813100	1.99443600
Н	-5.91286100	-4.48963600	1.04689400
Н	-6.92291800	-4.32337700	2.48719300
Н	-5.16456600	-4.20277300	2.63282500
С	-6.35151100	-1.76422800	3.15880900
Н	-5.49086500	-1.94274200	3.81370900
Н	-7.24459600	-2.17201100	3.64935600
Н	-6.48379100	-0.68051000	3.07195300
С	-1.63488000	-2.96987300	-0.47935600

С	0.17323900	-4.73811300	-1.66944100
С	-2.04013800	-4.26223900	-0.88407600
Ν	-0.35254100	-2.58107000	-0.74003200
С	0.55555400	-3.45660000	-1.28797200
С	-1.14777000	-5.13598800	-1.47724800
Н	-3.07480600	-4.55028600	-0.75924700
Н	-1.47597900	-6.12324500	-1.79022100
Н	0.90205400	-5.41585700	-2.09696800
С	1.93314000	-2.95329400	-1.35865700
С	4.49154300	-1.86427300	-1.33223000
С	2.98022200	-3.62739900	-1.99732100
С	2.14927400	-1.71470500	-0.70334100
С	3.44975600	-1.21218000	-0.64978700
С	4.25526800	-3.06454700	-1.99934200
Н	2.81011500	-4.56689000	-2.51503800
Н	5.06996000	-3.55814700	-2.52099900
Н	5.49043100	-1.44035800	-1.32756900
Н	0.72603800	3.87573500	1.75532500
С	1.36798600	3.11498200	1.32651500
Н	3.17732500	4.27647400	1.39527200
С	2.73572500	3.32020600	1.13914900
Ν	1.55161600	0.91571000	0.35554900
С	3.52244200	2.30470800	0.61847800
С	0.82244900	1.92460700	0.89706400
С	2.90670300	1.05194400	0.32651400
Н	-0.23603100	1.73539200	0.96938700
С	5.66474200	1.23189200	0.98279000
С	6.83869200	1.26338700	1.74384400
С	4.99776200	0.00775300	0.82118900

Н	4.94972000	-2.08651900	1.33118200
Ν	3.76257900	-0.02246000	0.08625600
С	7.35026100	0.10534600	2.32745300
Н	7.36399500	2.20210900	1.88357100
Н	8.26867900	0.14949300	2.90573400
С	6.66836900	-1.10294000	2.17402000
Н	7.04159900	-2.00834300	2.64428200
С	5.49087200	-1.15313700	1.43327900
Pt	0.47962400	-0.75088000	-0.29562600
С	5.01858200	2.45090200	0.32856900
С	5.58797900	3.77411900	0.86366700
Н	6.65356800	3.85044400	0.62724000
Н	5.47219700	3.86707200	1.94890400
Н	5.09676100	4.62828800	0.38645100
С	5.25901300	2.41701100	-1.20855900
Н	6.33271500	2.48123200	-1.41762900
Н	4.76145900	3.26762300	-1.68829000
Н	4.87900300	1.49884400	-1.66355100
Pt(cp-2)_ T ₁			
С	-4.00112100	2.72903200	-0.24217800
С	-1.30538900	2.50068900	-1.08500100
С	-3.33090600	1.51267800	-0.11742700
С	-3.34534300	3.84584400	-0.78640900
С	-2.00076400	3.69725000	-1.21253500
С	-1.96536900	1.40248200	-0.51556100
Н	-1.49017900	4.54189600	-1.66477500
Н	-0.28430300	2.40834500	-1.44120700
С	-3.72691900	0.18442100	0.31420400
С	-3.88339000	-2.54681700	0.76806400

С	-4.91975300	-0.34979600	0.78845700
С	-2.58112400	-0.63141300	0.11167600
С	-2.66304200	-2.05192500	0.18165700
С	-4.97879900	-1.74881200	1.06768800
Н	-5.77929700	0.28828400	0.96438400
Н	-3.93381000	-3.60376800	0.98757600
Ν	-1.49592600	0.12156000	-0.28891500
Н	-5.03585300	2.80025100	0.07416000
С	-4.03681600	5.21164100	-0.94430300
С	-5.49243700	5.19822700	-0.43940500
Н	-6.11062600	4.48475900	-0.99597400
Н	-5.93707000	6.19141000	-0.56951200
Н	-5.55295300	4.94644500	0.62562900
С	-4.05201800	5.61522300	-2.43904600
Н	-4.60393200	4.88086300	-3.03655000
Н	-3.04134500	5.69066200	-2.85331200
Н	-4.53754200	6.59091500	-2.56477900
С	-3.25884000	6.27800600	-0.13491700
Н	-2.22115200	6.36965000	-0.47229600
Н	-3.24338200	6.02509200	0.93157600
Н	-3.73380500	7.26086700	-0.24418400
С	-6.26412800	-2.32091800	1.69058700
С	-7.45594200	-2.05492900	0.73857400
Н	-7.30210500	-2.55061700	-0.22676100
Н	-7.59816000	-0.98669400	0.54595500
Н	-8.38457100	-2.44171400	1.17643800
С	-6.18704700	-3.83829600	1.94379200
Н	-6.03824700	-4.39984300	1.01449200
Н	-7.12571900	-4.18447700	2.39157000

Н	-5.37621600	-4.09551600	2.63451200
С	-6.52700500	-1.62264300	3.04757600
Н	-5.70229600	-1.80492400	3.74600200
Н	-7.44905000	-2.00784900	3.50056900
Н	-6.63620100	-0.53915900	2.93541100
С	-1.70738100	-2.94652100	-0.42526600
С	0.09336000	-4.73134400	-1.62423300
С	-2.10422800	-4.25280800	-0.78975300
Ν	-0.40434900	-2.53741200	-0.74214000
С	0.48810500	-3.45462500	-1.28088800
С	-1.23988700	-5.13800000	-1.40189000
Н	-3.13318000	-4.54468300	-0.61898000
Н	-1.57599600	-6.12577000	-1.70036400
Н	0.81715000	-5.42161400	-2.04240600
С	1.86701200	-2.96488600	-1.38110800
С	4.44136100	-1.88496600	-1.40109100
С	2.89939300	-3.63153900	-2.05055500
С	2.11188200	-1.72953700	-0.72567900
С	3.41485300	-1.23532800	-0.68723600
С	4.17746300	-3.07374400	-2.07558700
Н	2.71123800	-4.56323200	-2.57582200
Н	4.97518300	-3.56549100	-2.62529800
Н	5.44122400	-1.46469500	-1.41732600
Н	0.82146500	3.78538200	1.98855900
С	1.43908400	3.03963500	1.50105800
Н	3.25873700	4.19189300	1.53701500
С	2.80150800	3.24735700	1.26593600
Ν	1.56622200	0.87676300	0.43410600
С	3.55799300	2.24556000	0.67870000

С	0.86928300	1.87218300	1.04621200
С	2.92284800	1.00679600	0.36772400
Н	-0.18765500	1.68928500	1.15577600
С	5.69971400	1.14793100	0.93813400
С	6.89532700	1.15005500	1.66568600
С	5.01633000	-0.06555000	0.76566100
Н	4.96002000	-2.17045600	1.22754800
Ν	3.75918700	-0.06573700	0.06667600
С	7.41067900	-0.02653400	2.20706500
Н	7.43399100	2.08008800	1.81285800
Н	8.34554100	-0.00531000	2.75981500
С	6.71140200	-1.22395300	2.04563800
Н	7.08762100	-2.14374400	2.48453100
С	5.51339900	-1.24530800	1.33712200
Pt	0.45662700	-0.75925600	-0.26135900
С	5.04365900	2.38917100	0.33810400
С	5.64269500	3.69324600	0.88737700
Н	6.69976900	3.76824800	0.61489500
Н	5.56665600	3.75779600	1.97813000
Н	5.14104000	4.56318500	0.45102000
С	5.22969800	2.39450600	-1.20677900
Н	6.29580400	2.45815100	-1.45189800
Н	4.72158600	3.26067900	-1.64612400
Н	4.82838700	1.49072600	-1.67198600
Pt(cp-3)_ S ₀			
С	3.95953200	-1.31775500	-0.37343200
С	1.39518200	-2.41660100	-0.82140500
С	2.81422700	-0.51972500	-0.24919000
С	3.84764900	-2.66713800	-0.71663800

С	2.54744300	-3.18446500	-0.94372800
С	1.51889200	-1.06982000	-0.44858400
Н	2.43648600	-4.22350500	-1.24265800
Н	0.42219000	-2.84687000	-1.03941700
С	2.60283300	0.88276700	0.02015500
С	1.56561700	3.41831100	0.31903900
С	3.45830900	1.93844000	0.31643900
С	1.18578000	1.07840600	-0.06807300
С	0.65497000	2.39300500	-0.01931900
С	2.94216600	3.22892900	0.51353100
Н	4.52332500	1.74912600	0.40202500
Н	1.17628100	4.42013900	0.45617300
Ν	0.53266400	-0.10371800	-0.27148900
Н	4.93403900	-0.86732600	-0.21409800
С	5.06900100	-3.59132500	-0.88034600
С	6.39614500	-2.86583400	-0.58723300
Н	6.56293600	-2.02938100	-1.27545900
Н	7.23406000	-3.56289200	-0.70493200
Н	6.42937100	-2.47703900	0.43709800
С	5.12742900	-4.12609700	-2.33159900
Н	5.21810300	-3.30069300	-3.04691200
Н	4.22841900	-4.69447000	-2.59259400
Н	5.99195500	-4.78925600	-2.46408300
С	4.95295000	-4.78573900	0.09721400
Н	4.04350800	-5.36944500	-0.08075100
Н	4.92845300	-4.43801100	1.13669400
Н	5.81016200	-5.46201100	-0.01508400
С	3.82368500	4.42939000	0.91288800
С	5.30801600	4.03955100	1.05267600

Н	5.72116100	3.66177300	0.11031100
Н	5.45717700	3.27409300	1.82271900
Н	5.89564700	4.91849600	1.34198500
С	3.72461700	5.54049600	-0.15985300
Н	4.05540700	5.17096000	-1.13721400
Н	4.35494200	6.39650400	0.11269400
Н	2.69918600	5.90930200	-0.27270800
С	3.34826400	4.99184100	2.27390000
Н	2.30573700	5.32594500	2.23435300
Н	3.96261800	5.85092700	2.57256700
Н	3.42281900	4.23020300	3.05851400
С	-0.72018700	2.74629500	-0.40684300
С	-3.32851000	3.53328800	-1.03831300
С	-1.00761200	4.07300500	-0.80374100
Ν	-1.73444200	1.83008900	-0.43242000
С	-3.03222500	2.21925200	-0.69603200
С	-2.29547900	4.46355500	-1.11736200
Н	-0.19772300	4.78306700	-0.89073800
Н	-2.49734900	5.48651600	-1.42226600
Н	-4.35218700	3.81975700	-1.24605700
С	-2.85969200	-2.81865100	0.82920400
С	-0.67123900	-3.76296400	2.20484800
С	-2.92666300	-4.07094700	1.46865300
Ν	-1.72365700	-2.08638300	0.81759700
С	-0.66387000	-2.55687600	1.53492000
С	-1.82873600	-4.55012300	2.15545600
Н	-3.86394600	-4.61182600	1.41615200
Н	0.20548500	-1.91661500	1.53507400
Н	0.21354600	-4.07616900	2.74693300

Pt	-1.56815200	-0.17920200	0.00015800
Н	-1.87451500	-5.51030900	2.66062500
С	-4.04144600	1.16051000	-0.56919000
С	-5.77004700	-1.02753800	-0.37471400
С	-5.40430800	1.31503400	-0.86360200
С	-3.52972900	-0.08761900	-0.15032100
С	-4.41188800	-1.15494600	-0.08585200
С	-6.26366700	0.22195000	-0.75730800
Н	-5.80292500	2.27088400	-1.19035200
Н	-7.31958600	0.33638500	-0.98310700
Н	-6.41881800	-1.89527800	-0.30425800
0	-4.00456400	-2.45428800	0.23164400
Pt(cp-3)_ T ₁			
С	3.78829300	-1.70852700	-0.27971300
С	1.09900600	-2.49637000	-0.67443400
С	2.75977900	-0.76748000	-0.22716600
С	3.49486800	-3.05654200	-0.53602600
С	2.14106800	-3.41683100	-0.73647500
С	1.41383000	-1.15947800	-0.41222700
Н	1.89458300	-4.45323300	-0.94847500
Н	0.06981600	-2.80020500	-0.83680000
С	2.72397700	0.66906800	-0.00806300
С	2.05227500	3.31571100	0.27265900
С	3.72651400	1.59355500	0.25812400
С	1.35374800	1.05220400	-0.10292600
С	1.00312400	2.42553600	-0.03090600
С	3.39777300	2.94539900	0.43265100
Н	4.75327900	1.25441700	0.34130400
Н	1.79889800	4.35993200	0.41216800

Ν	0.55206300	-0.07221400	-0.28648200
Н	4.81264600	-1.38786600	-0.12381300
С	4.58439000	-4.14248900	-0.60557300
С	5.99638300	-3.57423500	-0.36602200
Н	6.26777700	-2.82609900	-1.11960000
Н	6.73435300	-4.38248800	-0.42285000
Н	6.08790200	-3.11275000	0.62396200
С	4.56695900	-4.80747200	-2.00332900
Н	4.76888700	-4.07120800	-2.78963100
Н	3.60012400	-5.27226200	-2.22269400
Н	5.33425300	-5.58949100	-2.06345500
С	4.31207400	-5.21795200	0.47413400
Н	3.33689400	-5.69662200	0.33607100
Н	4.32950500	-4.77763800	1.47778600
Н	5.07782400	-6.00254000	0.43299400
С	4.44451300	4.01845600	0.78751900
С	5.86689300	3.43365000	0.88645000
Н	6.19280500	2.99044500	-0.06157500
Н	5.93957300	2.66747500	1.66666100
Н	6.57603800	4.22993700	1.13954800
С	4.45700600	5.12071800	-0.29876400
Н	4.70867700	4.70191700	-1.27982900
Н	5.20179900	5.88835000	-0.05494700
Н	3.48593600	5.61946500	-0.38787500
С	4.08945100	4.65048800	2.15491000
Н	3.10018900	5.12015900	2.14259600
Н	4.82267000	5.42180800	2.42169000
Н	4.08871600	3.89311600	2.94707900
С	-0.34131600	2.99105300	-0.31784500

С	-2.87629500	4.02773700	-0.78684700
С	-0.48927100	4.32939700	-0.72993600
Ν	-1.43898700	2.21477800	-0.20481800
С	-2.69436500	2.69141700	-0.41572500
С	-1.76041900	4.84204900	-0.95541400
Н	0.38175200	4.94879300	-0.90118300
Н	-1.88059800	5.87137600	-1.28186500
Н	-3.86980600	4.41311500	-0.98239800
С	-3.43122300	-2.69155100	0.52543500
С	-1.64205100	-4.30819100	1.82787800
С	-3.70776300	-4.06867500	0.61741800
Ν	-2.32417500	-2.14502400	1.02287600
С	-1.45488200	-2.94309500	1.67488900
С	-2.79698200	-4.87994500	1.27438500
Н	-4.62702700	-4.45162300	0.18860400
Н	-0.57288400	-2.44451600	2.06706300
Н	-0.90824300	-4.90697100	2.35704300
Pt	-1.47097000	-0.02957200	-0.14191900
Н	-2.98541900	-5.94605100	1.36583100
С	-3.80151200	1.71555400	-0.27026000
С	-5.85352800	-0.16872400	-0.07598200
С	-5.13883300	2.13240800	-0.22291100
С	-3.45204900	0.33443400	-0.20197400
С	-4.51577600	-0.57148400	-0.10582800
С	-6.16155600	1.18899300	-0.12944500
Н	-5.39781600	3.18675700	-0.24339000
Н	-7.19853500	1.51064600	-0.09343700
Н	-6.63315200	-0.92176400	-0.01239600
0	-4.37533900	-1.96290600	-0.11268600

Pt(cp-4)_S₀

С	-3.93087900	2.51909400	-0.45372500
С	-1.12909200	2.62667400	-0.80916500
С	-3.15395900	1.36064800	-0.31881900
С	-3.32963300	3.74184700	-0.76141900
С	-1.92371600	3.75924500	-0.94368000
С	-1.74192200	1.41039100	-0.47229000
Н	-1.43755500	4.69292200	-1.21456000
Н	-0.05918400	2.67935300	-0.98873200
С	-3.46756400	-0.02551200	-0.06517900
С	-3.41841700	-2.76180800	0.25215100
С	-4.65399300	-0.70240200	0.19599000
С	-2.21259600	-0.71647100	-0.11226200
С	-2.18896600	-2.13437500	-0.04771800
С	-4.64197600	-2.09077200	0.39985600
Н	-5.58195000	-0.14245700	0.25102000
Н	-3.41899300	-3.83537800	0.39845600
Ν	-1.17380500	0.15466700	-0.28366400
Н	-5.00659100	2.44896000	-0.32819300
С	-4.12977500	5.04776700	-0.92684400
С	-5.63748900	4.84591900	-0.68292600
Н	-6.07422900	4.13803400	-1.39656400
Н	-6.16348400	5.80062100	-0.80040600
Н	-5.83991900	4.47851000	0.32978100
С	-3.94738000	5.59393400	-2.36347700
Н	-4.31157400	4.87231900	-3.10362100
Н	-2.89587400	5.79976700	-2.58998300
Н	-4.50677300	6.52917600	-2.49449900
С	-3.62110900	6.10205100	0.08572900
Н	-2.55743200	6.32165600	-0.05552600

Н	-3.75557100	5.75018100	1.11532500
Н	-4.17381900	7.04355000	-0.02730900
С	-5.90969500	-2.89299800	0.75637400
С	-7.15499500	-1.99183500	0.86694600
Н	-7.37690200	-1.48482800	-0.07920500
Н	-7.03729500	-1.22804600	1.64416100
Н	-8.02935000	-2.59889600	1.12869300
С	-6.18757400	-3.95441400	-0.33493100
Н	-6.33924300	-3.48018500	-1.31131900
Н	-7.08892700	-4.53141900	-0.09190400
Н	-5.35835000	-4.66343700	-0.43419800
С	-5.71229400	-3.60130500	2.11795400
Н	-4.86579800	-4.29622100	2.09692100
Н	-6.60774500	-4.17595100	2.38718700
Н	-5.52322900	-2.87188500	2.91385800
С	-1.01658400	-2.96478100	-0.37455500
С	1.15937500	-4.64359900	-0.90393100
С	-1.20862300	-4.31241800	-0.75867000
Ν	0.25860600	-2.47449200	-0.35435700
С	1.34352200	-3.30545800	-0.57536700
С	-0.13498500	-5.14334200	-1.01862800
Н	-2.21481700	-4.68722900	-0.87931400
Н	-0.30277200	-6.17579900	-1.31219300
Н	2.02016500	-5.27902700	-1.07449000
Ν	3.90716100	0.75930100	0.31656800
С	2.96442600	1.50302900	1.02643300
С	1.12693500	2.97767100	2.49402300
С	3.39988700	2.51430600	1.90576800
Ν	1.63301600	1.21300500	0.91568000

С	0.75821700	1.94235700	1.65586500
С	2.48664800	3.25991400	2.62963500
Н	4.46057700	2.66290800	2.04728800
Н	-0.27777200	1.65739200	1.54740800
Н	0.36458400	3.52240700	3.03885700
Pt	0.80053000	-0.52983500	0.06853800
Н	2.83522100	4.03009200	3.31150800
С	5.25759100	1.10619400	0.06059900
С	7.95705000	1.25169200	-0.62566700
С	5.88556000	2.35507000	0.04314800
С	5.96357800	-0.06625300	-0.32383900
С	7.31987400	0.01387500	-0.65528200
С	7.23880300	2.40968500	-0.29510400
Н	5.34447700	3.27094400	0.24886600
Н	7.86325400	-0.88027700	-0.94807300
Н	7.73712300	3.37481300	-0.31168300
Н	9.00999800	1.32543400	-0.88157000
С	2.65475000	-2.66769100	-0.43240400
С	5.01085600	-1.15841400	-0.35224100
С	3.89762800	-3.25801000	-0.75870800
С	2.58514600	-1.32682500	-0.01141400
С	3.76875500	-0.61644100	0.01646300
С	5.07273800	-2.51376300	-0.72127900
Н	3.94738800	-4.29368700	-1.08291600
Н	6.01746300	-2.96938300	-1.00305400
Pt(cp-4)_ T ₁			
С	-4.05342300	2.46308700	-0.41762900
С	-1.27080600	2.58754200	-0.91931600
С	-3.26312700	1.31836300	-0.31101200

С	-3.47177800	3.68809000	-0.77923300
С	-2.07959000	3.71557400	-1.03113800
С	-1.86973900	1.38100600	-0.54286100
Н	-1.61437500	4.64956500	-1.33275200
Н	-0.20805300	2.63029300	-1.13928400
С	-3.54806300	-0.07503600	-0.00945200
С	-3.49173000	-2.79104800	0.38295200
С	-4.72513200	-0.73061600	0.33120200
С	-2.30552100	-0.76692600	-0.11527700
С	-2.27833100	-2.18086500	0.01000500
С	-4.70840500	-2.11290800	0.56581500
Н	-5.64313800	-0.16064000	0.42502300
Н	-3.48170000	-3.86027700	0.55752800
Ν	-1.27269100	0.13587900	-0.36359700
Н	-5.11903700	2.39449800	-0.22703600
С	-4.29110200	4.98447100	-0.92026700
С	-5.78542400	4.77165400	-0.61124100
Н	-6.24573000	4.05117100	-1.29702300
Н	-6.32311100	5.72040200	-0.72034000
Н	-5.94387000	4.41855400	0.41424400
С	-4.17294300	5.51739900	-2.36881400
Н	-4.55721900	4.78488300	-3.08771500
Н	-3.13504600	5.73709800	-2.63960500
Н	-4.75086800	6.44294500	-2.48332400
С	-3.74682300	6.05011500	0.06174400
Н	-2.69274200	6.27840200	-0.12751200
Н	-3.83380800	5.70661800	1.09906100
Н	-4.31337100	6.98456900	-0.03605000
С	-5.96021700	-2.89978500	0.99785900

С	-7.19532500	-1.99033200	1.14597000
Н	-7.45947100	-1.50337700	0.20015500
Н	-7.03957500	-1.21107800	1.90079300
Н	-8.05827300	-2.58778600	1.46090800
С	-6.28796800	-3.98222300	-0.05869500
Н	-6.48151500	-3.52847500	-1.03736100
Н	-7.18012600	-4.54810600	0.23699200
Н	-5.46720200	-4.69749100	-0.17890700
С	-5.69900200	-3.57950600	2.36343400
Н	-4.85785900	-4.27939800	2.31769700
Н	-6.58362600	-4.14317700	2.68498000
Н	-5.47093500	-2.83479100	3.13443100
С	-1.11487000	-3.05441800	-0.30090900
С	1.09508200	-4.65438700	-0.82606600
С	-1.29546700	-4.40784000	-0.64866900
Ν	0.13190000	-2.54727400	-0.28198300
С	1.23827700	-3.29085100	-0.54003100
С	-0.18263800	-5.20166300	-0.89402400
Н	-2.28990200	-4.82224200	-0.75231500
Н	-0.31115800	-6.24886100	-1.15426000
Н	1.96113400	-5.27636200	-1.01549900
Ν	4.09988900	0.76663100	0.24938300
С	3.30509400	1.59896000	1.07258900
С	1.75028300	3.20970700	2.66427400
С	3.85993100	2.14550800	2.24425300
Ν	2.02997100	1.81059600	0.71910700
С	1.27716500	2.59213800	1.51268800
С	3.07417700	2.96941800	3.03928500
Н	4.87955500	1.90789800	2.52306500

Н	0.24725900	2.72479100	1.19477800
Н	1.09687300	3.84559900	3.25281600
Pt	0.68427000	-0.36637700	-0.16324100
Н	3.48391200	3.39973700	3.94892400
С	5.48365600	0.94788600	0.07906700
С	8.20810100	0.82157500	-0.47674700
С	6.25625300	2.10376200	0.23472100
С	6.06137800	-0.26205800	-0.37497700
С	7.43280300	-0.32149200	-0.64915200
С	7.61951000	2.02222200	-0.04480600
Н	5.81248700	3.04250000	0.54842100
Н	7.88289600	-1.24625900	-1.00038900
Н	8.23492600	2.91074300	0.06688800
Н	9.27332700	0.79046900	-0.68720200
С	2.53797300	-2.57434700	-0.50226200
С	4.98655500	-1.22250500	-0.47585500
С	3.73726800	-3.24721100	-0.81110900
С	2.52110700	-1.17851800	-0.19207500
С	3.78015000	-0.56298300	-0.13088700
С	4.95494900	-2.57657800	-0.82286200
Н	3.73048700	-4.30027500	-1.07296400
Н	5.86858500	-3.10181800	-1.08764700

References:

- (1) G. Li, F. Zhan, J. Zheng, Y.-F. Yang, Q. Wang, Q. Chen, G. Shen and Y. She, *Inorg. Chem.*, 2020, **59**, 3718–3729.
- (2) G. Li, J. Wen, F. Zhan, W. Lou, Y.-F. Yang, Y. Hu and Y. She, *Inorg. Chem.*, 2022, **61**, 11218–11231.
- (3) G. Li, G. Shen, X. Fang, Y.-F. Yang, F. Zhan, J. Zheng, W. Lou, Q. Zhang and Y. She, *Inorg. Chem.*, 2020, **59**, 18109–18121.