## **Electronic Supplementary Information**

# Ruthenium, copper and ruthenium-copper complexes of an unsymmetrical phosphino pyridyl 1,8-naphthyridine PNNN ligand

Jingyun Wu, Michael A. Stevens, Michael G. Gardiner, Annie L. Colebatch

#### Contents

| 1. | Characterisation data for PNNN                                                                                                                                  | 2  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | Characterisation data for [Cu <sub>2</sub> Cl <sub>2</sub> (PNNN)] (1)                                                                                          | 6  |
| 3. | Characterisation data for [RuCl(cymene)(PNNN)]Cl ([2]Cl)                                                                                                        | 10 |
| 4. | Characterisation data for [RuCl(cymene)(PNNN)]PF6 ([2]PF6)                                                                                                      | 14 |
| 5. | Characterisation data for [RuCuCl <sub>3</sub> (cymene)(PNNN)] ( <b>3</b> )                                                                                     | 17 |
| 6. | Characterisation data for [RuCuCl <sub>2</sub> (cymene)(PNNN)] <sub>2</sub> [PF <sub>6</sub> ] <sub>2</sub> ([4] <sub>2</sub> [PF <sub>6</sub> ] <sub>2</sub> ) | 21 |
| 7. | Characterisation data for [Cu <sub>2</sub> (O <sup>t</sup> Bu)(PNNN*)] (5)                                                                                      | 25 |
| 8. | Characterisation data for [RuCuCl(cymene)(PNNN*)]PF <sub>6</sub> ([6]PF <sub>6</sub> )                                                                          | 28 |
| 9. | X-ray crystallographic data                                                                                                                                     | 32 |

1. Characterisation data for PNNN



Figure S1. <sup>1</sup>H NMR spectrum of PNNN (400 MHz, CDCl<sub>3</sub>, 298 K).



Figure S2. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of PNNN (162 MHz, CDCl<sub>3</sub>, 298 K).



Figure S4. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of PNNN (400 MHz, CDCl<sub>3</sub>, 298 K).



Figure S5. <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum of PNNN (101, 400 MHz, CDCl<sub>3</sub>, 298 K).



Figure S6. <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum of PNNN (101, 400 MHz, CDCl<sub>3</sub>, 298 K).



Figure S7. Experimental (bottom) and simulated (top) high resolution mass spectra (ESI+) of PNNN.



Figure S8. X-ray crystal structure of PNNN (50% displacement ellipsoids, H atoms and CHCl<sub>3</sub> solvent omitted). Selected bond lengths (Å) and degrees (°): P1–C10 1.869(2), C2–C10 1.506(3), N1–C2 1.322(3), P1–C10–C2 114.72(19).

#### 2. Characterisation data for [Cu<sub>2</sub>Cl<sub>2</sub>(PNNN)] (1)





Figure S10.  ${}^{31}P{}^{1}H$  NMR spectrum of [Cu<sub>2</sub>Cl<sub>2</sub>(PNNN)] (1) (162 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).



Figure S12. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of [Cu<sub>2</sub>Cl<sub>2</sub>(PNNN)] (1) (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).



Figure S14.  $^{1}H$ - $^{13}C$  HMBC NMR spectrum of [Cu<sub>2</sub>Cl<sub>2</sub>(PNNN)] (1) (201, 800 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).



Figure S15. Experimental (top) and simulated (bottom) high resolution mass spectra (ESI+) of  $[Cu_2Cl_2(PNNN)]$  (1).



3. Characterisation data for [RuCl(cymene)(PNNN)]Cl ([2]Cl)

Figure S16. <sup>1</sup>H NMR spectrum of [RuCl(cymene)(PNNN)]Cl ([2]Cl) (400 MHz, CD<sub>3</sub>CN, 298 K).





Figure S19. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of [RuCl(cymene)(PNNN)]Cl ([2]Cl) (400 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_11_Figure_0.jpeg)

Figure S20. <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum of [RuCl(cymene)(PNNN)]Cl (**[2]Cl**) (101, 400 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_11_Figure_2.jpeg)

Figure S21. <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum of [RuCl(cymene)(PNNN)]Cl ([2]Cl) (101, 400 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_12_Figure_0.jpeg)

Figure S22. Experimental (bottom) and simulated (top) high resolution mass spectra (ESI+) of [RuCl(cymene)(PNNN)]Cl ([2]Cl).

4. Characterisation data for [RuCl(cymene)(PNNN)]PF<sub>6</sub> ([2]PF<sub>6</sub>)

![](_page_13_Figure_1.jpeg)

Figure S23. <sup>1</sup>H NMR spectrum of [RuCl(cymene)(PNNN)]PF<sub>6</sub> ([2]PF<sub>6</sub>) (400 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_13_Figure_3.jpeg)

Figure S24. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of [RuCl(cymene)(PNNN)]PF<sub>6</sub> ([2]PF<sub>6</sub>) (162 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_14_Figure_0.jpeg)

Figure S25. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of [RuCl(cymene)(PNNN)]PF<sub>6</sub> ([2]PF<sub>6</sub>) (101 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_14_Figure_2.jpeg)

Figure S26. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of [RuCl(cymene)(PNNN)]PF<sub>6</sub> ([2]PF<sub>6</sub>) (400 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_15_Figure_0.jpeg)

Figure S27. <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum of [RuCl(cymene)(PNNN)]PF<sub>6</sub> (**[2]PF**<sub>6</sub>) (101, 400 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_15_Figure_2.jpeg)

Figure S28. <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum of [RuCl(cymene)(PNNN)]PF<sub>6</sub> (**[2]PF**<sub>6</sub>) (101, 400 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_16_Figure_0.jpeg)

5. Characterisation data for [RuCuCl<sub>3</sub>(cymene)(PNNN)] (3)

Figure S29. <sup>1</sup>H NMR spectrum of [RuCuCl<sub>3</sub>(cymene)(PNNN)] (**3**) (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO, 298 K).

![](_page_16_Figure_3.jpeg)

Figure S30.  ${}^{31}P{}^{1}H$  NMR spectrum of [RuCuCl<sub>3</sub>(cymene)(PNNN)] (**3**) (162 MHz, (CD<sub>3</sub>)<sub>2</sub>SO, 298 K).

![](_page_17_Figure_0.jpeg)

Figure S32. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of [RuCuCl<sub>3</sub>(cymene)(PNNN)] (**3**) (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO, 298 K).

![](_page_18_Figure_0.jpeg)

Figure S33. <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum of [RuCuCl<sub>3</sub>(cymene)(PNNN)] (**3**) (201, 800 MHz, (CD<sub>3</sub>)<sub>2</sub>SO, 298 K).

![](_page_18_Figure_2.jpeg)

Figure S34. <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum of [RuCuCl<sub>3</sub>(cymene)(PNNN)] (**3**) (201, 800 MHz, (CD<sub>3</sub>)<sub>2</sub>SO, 298 K).

![](_page_19_Figure_0.jpeg)

Figure S35. Experimental (bottom) and simulated (top) high resolution mass spectra (ESI+) of [RuCuCl<sub>3</sub>(cymene)(PNNN)] (**3**).

![](_page_20_Figure_0.jpeg)

![](_page_20_Figure_1.jpeg)

Figure S36. <sup>1</sup>H NMR spectrum of [RuCuCl<sub>2</sub>(cymene)(PNNN)]<sub>2</sub>[PF<sub>6</sub>]<sub>2</sub> ([4]<sub>2</sub>[PF<sub>6</sub>]<sub>2</sub>) (400 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_20_Figure_3.jpeg)

Figure S37. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of [RuCuCl<sub>2</sub>(cymene)(PNNN)]<sub>2</sub>[PF<sub>6</sub>]<sub>2</sub> (**[4]<sub>2</sub>[PF<sub>6</sub>]<sub>2</sub>**) (162 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_21_Figure_0.jpeg)

Figure S38. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of [RuCuCl<sub>2</sub>(cymene)(PNNN)]<sub>2</sub>[PF<sub>6</sub>]<sub>2</sub> ([4]<sub>2</sub>[PF<sub>6</sub>]<sub>2</sub>) (101 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_21_Figure_2.jpeg)

Figure S39. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of [RuCuCl<sub>2</sub>(cymene)(PNNN)]<sub>2</sub>[PF<sub>6</sub>]<sub>2</sub> (**[4]<sub>2</sub>[PF<sub>6</sub>]<sub>2</sub>**) (400 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_22_Figure_0.jpeg)

Figure S40. <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum of [RuCuCl<sub>2</sub>(cymene)(PNNN)]<sub>2</sub>[PF<sub>6</sub>]<sub>2</sub> (**[4]<sub>2</sub>[PF<sub>6</sub>]<sub>2</sub>**) (101, 400 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_22_Figure_2.jpeg)

Figure S41. <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum of [RuCuCl<sub>2</sub>(cymene)(PNNN)]<sub>2</sub>[PF<sub>6</sub>]<sub>2</sub> (**[4]<sub>2</sub>[PF<sub>6</sub>]<sub>2</sub>**) (101, 400 MHz, CD<sub>3</sub>CN, 298 K).

![](_page_23_Figure_0.jpeg)

Figure S42. Experimental (bottom) and simulated (top) high resolution mass spectra (ESI+) of [RuCuCl<sub>2</sub>(cymene)(PNNN)]<sub>2</sub>[PF<sub>6</sub>]<sub>2</sub> ([**4**]<sub>2</sub>[**PF**<sub>6</sub>]<sub>2</sub>).

7. Characterisation data for [Cu<sub>2</sub>(O<sup>t</sup>Bu)(PNNN\*)] (5)

![](_page_24_Figure_1.jpeg)

Figure S43. <sup>1</sup>H NMR spectrum of [Cu<sub>2</sub>(O<sup>t</sup>Bu)(PNNN\*)] (5) (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).

![](_page_24_Figure_3.jpeg)

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm) Figure S44.  ${}^{31}P{}^{1}H{}$  NMR spectrum of [Cu<sub>2</sub>(O<sup>t</sup>Bu)(PNNN\*)] (5) (162 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).

![](_page_25_Figure_0.jpeg)

<sup>175</sup> <sup>170</sup> <sup>165</sup> <sup>160</sup> <sup>155</sup> <sup>150</sup> <sup>145</sup> <sup>140</sup> <sup>135</sup> <sup>130</sup> <sup>125</sup> <sup>120</sup> <sup>115</sup> <sup>110</sup> <sup>105</sup> <sup>100</sup> <sup>95</sup> <sup>90</sup> <sup>85</sup> <sup>80</sup> <sup>75</sup> <sup>70</sup> <sup>65</sup> <sup>60</sup> <sup>55</sup> <sup>50</sup> <sup>45</sup> <sup>40</sup> <sup>35</sup> <sup>30</sup> <sup>25</sup> <sup>f1</sup> <sup>(ppm)</sup> Figure S45. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of [Cu<sub>2</sub>(O<sup>t</sup>Bu)(PNNN\*)] (5) (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).

![](_page_25_Figure_2.jpeg)

Figure S46. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of [Cu<sub>2</sub>(O<sup>t</sup>Bu)(PNNN\*)] (5) (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).

![](_page_26_Figure_0.jpeg)

Figure S48. <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum of [Cu<sub>2</sub>(O<sup>t</sup>Bu)(PNNN\*)] (5) (101, 400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).

8. Characterisation data for [RuCuCl(cymene)(PNNN\*)]PF<sub>6</sub> ([6]PF<sub>6</sub>)

![](_page_27_Figure_1.jpeg)

Figure S49. <sup>1</sup>H NMR spectrum of [RuCuCl(cymene)(PNNN\*)]PF<sub>6</sub> ([6]PF<sub>6</sub>) (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).

![](_page_27_Figure_3.jpeg)

![](_page_27_Figure_4.jpeg)

Figure S50. Aromatic region of the <sup>1</sup>H NMR spectrum of [RuCuCl(cymene)(PNNN\*)]PF<sub>6</sub> (**[6]PF**<sub>6</sub>) (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).

![](_page_28_Figure_0.jpeg)

![](_page_28_Figure_1.jpeg)

Figure S51. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of [RuCuCl(cymene)(PNNN\*)]PF<sub>6</sub> ([6]PF<sub>6</sub>) (162 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).

![](_page_28_Figure_3.jpeg)

 $Figure \ S52. \ ^{13}C\{^{1}H\} \ NMR \ spectrum \ of \ [RuCuCl(cymene)(PNNN^*)] PF_{6} \ (\textbf{[6]PF_{6}}) \ (101 \ MHz, \ CD_{2}Cl_{2}, \ 298 \ K).$ 

![](_page_29_Figure_0.jpeg)

Figure S53. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of [RuCuCl(cymene)(PNNN\*)]PF<sub>6</sub> ([6]PF<sub>6</sub>) (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).

![](_page_29_Figure_2.jpeg)

Figure S54. <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum of [RuCuCl(cymene)(PNNN\*)]PF<sub>6</sub> (**[6]PF**<sub>6</sub>) (101, 400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).

![](_page_30_Figure_0.jpeg)

Figure S55. <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum of [RuCuCl(cymene)(PNNN\*)]PF<sub>6</sub> (**[6]PF**<sub>6</sub>) (101, 400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K).

![](_page_30_Figure_2.jpeg)

Figure S56. Experimental (bottom) and simulated (top) high resolution mass spectra (ESI+) of [RuCuCl(cymene)(PNNN\*)]PF<sub>6</sub> ([**6**]**PF**<sub>6</sub>).

## 9. X-ray crystallographic data

## Table S1. X-ray crystallographic data for reported compounds.

| Compound                                       | (PNNN) <sub>2</sub> .<br>CHCl <sub>3</sub>                                | $[Cu_2Cl_2(PNNN)] \cdot CH_2Cl_2 (1 \cdot CH_2Cl_2)$               | [RuCl(cymene)(PNNN)]<br>Cl ( <b>[2]Cl</b> ) | [RuCuCl <sub>3</sub> (cymene)(PNNN)]<br>·(MeCN) <sub>2</sub> ( <b>3</b> ·(MeCN) <sub>2</sub> )              | [RuCuCl <sub>2</sub> (cymene)(PNNN)] <sub>2</sub><br>[PF <sub>6</sub> ] <sub>1.655</sub> [CuCl <sub>2</sub> ] <sub>0.345</sub> ·(MeCN) <sub>2</sub><br>([ <b>4</b> ] <sub>2</sub> [PF <sub>6</sub> ] <sub>1.655</sub> [CuCl <sub>2</sub> ] <sub>0.345</sub> ·<br>(MeCN) <sub>2</sub> ) | [Cu <sub>2</sub> (OtBu)(PNNN*)]<br>( <b>5</b> )                   | [RuCuCl(cymene)(PNNN*)]<br>PF <sub>6</sub> ( <b>[6]PF</b> <sub>6</sub> ) |
|------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|
| CCDC number                                    | 2386871                                                                   | 2386871                                                            | 2386872                                     | 2386873                                                                                                     | 2386874                                                                                                                                                                                                                                                                                | 2386875                                                           | 2386876                                                                  |
| Chemical<br>formula                            | 2(C <sub>22</sub> H <sub>28</sub> N <sub>3</sub> P),<br>CHCl <sub>3</sub> | $\begin{array}{c} C_{22}H_{28}Cl_2Cu_2N_3P\\ CH_2Cl_2 \end{array}$ | $C_{32}H_{43}Cl_2N_3PRu$                    | C <sub>32</sub> H <sub>42</sub> Cl <sub>3</sub> CuN <sub>3</sub> PRu,<br>2(C <sub>2</sub> H <sub>3</sub> N) | C <sub>64</sub> H <sub>84</sub> Cl <sub>4</sub> Cu <sub>2</sub> N <sub>6</sub> P <sub>2</sub> Ru <sub>2</sub> ,<br>1.655(F <sub>6</sub> P), 0.345(Cl <sub>2</sub> Cu),<br>2(C <sub>2</sub> H <sub>3</sub> N)                                                                           | C <sub>26</sub> H <sub>36</sub> Cu <sub>2</sub> N <sub>3</sub> OP | C <sub>32</sub> H <sub>41</sub> ClCuN <sub>3</sub> PRu, F <sub>6</sub> P |
| Formula weight                                 | 850.25                                                                    | 648.35                                                             | 636.1854                                    | 736.0825                                                                                                    | 1838.77                                                                                                                                                                                                                                                                                | 564.63                                                            | 843.68                                                                   |
| Temperature/K                                  | 150.00(10)                                                                | 150.00(10)                                                         | 150.00(10)                                  | 150.00(10)                                                                                                  | 150.00(10)                                                                                                                                                                                                                                                                             | 150.00(10)                                                        | 100(2)                                                                   |
| Crystal system                                 | Monoclinic                                                                | Triclinic                                                          | Tetragonal                                  | Triclinic                                                                                                   | Triclinic                                                                                                                                                                                                                                                                              | Triclinic                                                         | Triclinic                                                                |
| Space group                                    | P21                                                                       | P-1                                                                | 14 <sub>1</sub> /a                          | P-1                                                                                                         | P-1                                                                                                                                                                                                                                                                                    | P-1                                                               | P-1                                                                      |
| a/Å                                            | 18.4963(2)                                                                | 9.7176(3)                                                          | 32.5802(3)                                  | 11.0189(2)                                                                                                  | 8.3879(3)                                                                                                                                                                                                                                                                              | 8.2661(3)                                                         | 8.3590(17)                                                               |
| b/Å                                            | 6.17950(10)                                                               | 13.0045(5)                                                         | 32.5802(3)                                  | 12.5547(2)                                                                                                  | 16.3160(6)                                                                                                                                                                                                                                                                             | 11.0365(3)                                                        | 10.554(2)                                                                |
| c/Å                                            | 20.5648(3)                                                                | 13.0393(3)                                                         | 12.6410(3)                                  | 14.1481(3)                                                                                                  | 16.3624(5)                                                                                                                                                                                                                                                                             | 15.4542(4)                                                        | 20.422(4)                                                                |
| α/°                                            | 90                                                                        | 64.567(3)                                                          | 90                                          | 87.736(2)                                                                                                   | 113.508(3)                                                                                                                                                                                                                                                                             | 96.178(2)                                                         | 100.97(3)                                                                |
| β/°                                            | 107.9800(10)                                                              | 68.136(3)                                                          | 90                                          | 83.713(2)                                                                                                   | 100.048(3)                                                                                                                                                                                                                                                                             | 98.598(2)                                                         | 97.18(3)                                                                 |
| γ/°                                            | 90                                                                        | 75.453(3)                                                          | 90                                          | 77.647(2)                                                                                                   | 96.419(3)                                                                                                                                                                                                                                                                              | 108.172(3)                                                        | 93.89(3)                                                                 |
| Volume/Å <sup>3</sup>                          | 2235.72(6)                                                                | 1372.87(9)                                                         | 13418.0(4)                                  | 1900.16(6)                                                                                                  | 1980.74(13)                                                                                                                                                                                                                                                                            | 1306.52(7)                                                        | 1747.1(6)                                                                |
| Z                                              | 2                                                                         | 2                                                                  | 16                                          | 2                                                                                                           | 1                                                                                                                                                                                                                                                                                      | 2                                                                 | 2                                                                        |
| Radiation                                      | Cu Kα                                                                     | Cu Kα                                                              | Си Κα                                       | Си Κα                                                                                                       | Си Κα                                                                                                                                                                                                                                                                                  | Cu Kα                                                             | Synchrotron – equivalent<br>to Mo Kα                                     |
| µ/mm⁻¹                                         | 2.827                                                                     | 6.175                                                              | 5.877                                       | 1.54184                                                                                                     | 6.451                                                                                                                                                                                                                                                                                  | 2.756                                                             | 1.268                                                                    |
| Dcalc/gcm <sup>-3</sup>                        | 1.263                                                                     | 1.568                                                              | 1.332                                       | 1.490                                                                                                       | 1.541                                                                                                                                                                                                                                                                                  | 1.435                                                             | 1.604                                                                    |
| Reflection<br>measured                         | 15589                                                                     | 14511                                                              | 21093                                       | 22982                                                                                                       | 14037                                                                                                                                                                                                                                                                                  | 7947                                                              | 43947                                                                    |
| Independent reflections                        | 7852                                                                      | 5606                                                               | 6925                                        | 7655                                                                                                        | 7822                                                                                                                                                                                                                                                                                   | 5072                                                              | 7496                                                                     |
| R <sub>int</sub>                               | 0.0314                                                                    | 0.0402                                                             | 0.0640                                      | 0.0238                                                                                                      | 0.0228                                                                                                                                                                                                                                                                                 | 0.0194                                                            | 0.0607                                                                   |
| Final $R_1$ values [I > $2\sigma(I)$ ]         | 0.0358                                                                    | 0.0476                                                             | 0.0457                                      | 0.0277                                                                                                      | 0.0470                                                                                                                                                                                                                                                                                 | 0.0341                                                            | 0.0388                                                                   |
| Final <i>wR</i> <sub>2</sub> values (all data) | 0.0934                                                                    | 0.1241                                                             | 0.1241                                      | 0.0697                                                                                                      | 0.1318                                                                                                                                                                                                                                                                                 | 0.0938                                                            | 0.1074                                                                   |
| Goodness-of-fit<br>on F <sup>2</sup>           | 1.052                                                                     | 1.086                                                              | 1.055                                       | 1.056                                                                                                       | 1.019                                                                                                                                                                                                                                                                                  | 1.035                                                             | 1.106                                                                    |

![](_page_32_Figure_0.jpeg)

Figure S57. Atom numbering scheme used in Table S2.

Table S2. Comparison of PNNN vs PNNN\* bond lengths from X-ray crystallographic analyses.

| Bond              | Bond length (Å) |          |                                                  |                    |  |  |  |
|-------------------|-----------------|----------|--------------------------------------------------|--------------------|--|--|--|
| Compound          | [1]             | [5]      | [4] <sub>2</sub> [PF <sub>6</sub> ] <sub>2</sub> | [6]PF <sub>6</sub> |  |  |  |
| Ligand assignment | PNNN            | PNNN*    | PNNN                                             | PNNN*              |  |  |  |
| C2-C10            | 1.509(4)        | 1.376(3) | 1.497(6)                                         | 1.360(4)           |  |  |  |
| C2–C3             | 1.424(5)        | 1.449(3) | 1.427(6)                                         | 1.458(4)           |  |  |  |
| C3-C4             | 1.362(5)        | 1.338(3) | 1.354(7)                                         | 1.334(5)           |  |  |  |
| C4–C5             | 1.415(5)        | 1.436(3) | 1.417(7)                                         | 1.435(5)           |  |  |  |
| C5–C9             | 1.414(4)        | 1.429(3) | 1.422(5)                                         | 1.439(4)           |  |  |  |
| C5-C6             | 1.409(5)        | 1.387(3) | 1.405(6)                                         | 1.375(5)           |  |  |  |
| C6-C7             | 1.363(5)        | 1.379(4) | 1.368(7)                                         | 1.387(5)           |  |  |  |
| C7–C8             | 1.415(4)        | 1.381(3) | 1.400(6)                                         | 1.388(4)           |  |  |  |
| C2-N1             | 1.323(4)        | 1.388(3) | 1.325(6)                                         | 1.402(4)           |  |  |  |
| C9-N1             | 1.349(4)        | 1.356(3) | 1.346(5)                                         | 1.333(4)           |  |  |  |
| C8-N2             | 1.334(4)        | 1.346(3) | 1.342(5)                                         | 1.360(4)           |  |  |  |
| C9-N2             | 1.349(4)        | 1.357(3) | 1.379(5)                                         | 1.371(4)           |  |  |  |