Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

# **Supporting material**

### Synthesis, Cytotoxicities, Structural Properties and Comparison of

### Dihalogenosubstituted-thiosemicarbazone ligands and Mixed-Ligand Ni(II)

### Complexes

## Elif AVCU ALTIPARMAK<sup>1</sup>, Güneş ÖZEN EROĞLU<sup>2</sup>, Namık ÖZDEMİR<sup>3</sup>, Serap ERDEM KURUCA<sup>4,5</sup>,

#### Tülay BAL DEMİRCİ<sup>1,\*</sup>

<sup>1</sup> Department of Chemistry, Engineering Faculty, Inorganic Chemistry Department, Istanbul University-Cerrahpasa, 34320, Istanbul, Turkiye

<sup>2</sup> Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkiye

<sup>3</sup> Department of Physic, Faculty of Art and Science, Ondokuz Mayis University, 55139, Samsun, Turkiye

<sup>4</sup> Department of Physiology, Faculty of Medicine, Istanbul University, 34390, Istanbul, Turkiye

<sup>5</sup> Department of Physiology, Faculty of Medicine, Istanbul Atlas University, 34408, Istanbul, Turkiye

\* Corresponding author: Tülay BAL DEMİRCİ tulaybal@iuc.edu.tr

#### **Orcid ID**

| Elif AVCU ALTIPARMAK | 0000-0002-5491-8445 |
|----------------------|---------------------|
| Güneş ÖZEN EROĞLU    | 0000-0003-3681-9336 |
| Tülay BAL-DEMIRCI    | 0000-0003-4663-2209 |
| Namık ÖZDEMİR        | 0000-0003-3371-9874 |
| Serap ERDEM KURUCA   | 0000-0001-7878-9994 |

### **Supplementary Materials**



Fig. S1 Molecular structure of Complex I with the atom numbering. Thermal ellipsoids are shown at the 30% probability level



Fig. S2 Molecular structure of Complex II with the atom numbering. Thermal ellipsoids are shown at the 30% probability level



**Fig. S3** The graphs showing the cell viability obtained by MTT assay in THP-1 human acute monocytic leukemia cell line treated with different concentrations  $H_2L1$ ,  $H_2L2$ ,  $H_2L3$ , **Complex I, Complex II, Complex III** and **Cisplatin**. \*\*\*p < 0.001, \*\*p < 0.01, \*p < 0.05, significant differences between control and each treatment group. The results represent the means of at least 3 independent experiments





**Fig. S4** The graphs showing the cell viability obtained by MTT assay in MDA-MB-231 human breast cancer cell line treated with different concentrations  $H_2L1$ ,  $H_2L2$ ,  $H_2L3$ , **Complex I, Complex II, Complex III** and **Cisplatin**. \*\*\*\*p < 0.001, \*\*p < 0.01, \*p < 0.05, significant differences between control and each treatment group, ns:not significant. The results represent the means of at least 3 independent experiments



**Fig. S5** The graphs showing the cell viability obtained by MTT assay in Human umbilical vein endothelial cells (HUVEC) cell line treated with different concentrations  $H_2L1$ ,  $H_2L2$ ,  $H_2L3$ , **Complex I, Complex II, Complex III** and **Cisplatin**.\*\*\*p < 0.001, \*\*p < 0.01, \*p < 0.05, significant differences between control and each treatment group. The results represent the means of at least 3 independent experiments



Fig. S6 Representative microscopic images (20X) of all cell lines treated with  $H_2L1$ ,  $H_2L2$ ,  $H_2L3$ , Complex I, Complex II, Complex III, and Cisplatin at their IC<sub>50</sub> concentrations for 72 hours.

## **Stability Tests of the Active Compounds**

**Stabilities of the Substances in PBS** 



Fig. S7 UV-Vis Spectrum of the  $H_2\textit{L1}$  in PBS. (%2 DMF, 40  $\mu\text{M})$ 



Fig. S8 Time-dependent stability of the  $H_2L1$  in PBS. (%2 DMF, 40  $\mu$ M)



Fig. S9 UV-Vis Spectrum of the Complex I in PBS. (%2 DMF, 40  $\mu$ M)



Fig. S10 Time-dependent stability of the Complex I in PBS. (%2 DMF, 40  $\mu$ M)

#### Stabilities of the Substances in DMSO

The stabilities of biologically active substances in DMSO was measured in a time-dependent manner

(0, 1, 3, 6, 12 and 24 h).



Fig. S11 Time-dependent stability of the H<sub>2</sub>L1 in DMSO.



Fig. S12 Time-dependent stability of the Complex I in DMSO.

## Stability of Substances Against pH Changes

The stability of the compounds against pH changes was examined in DMSO. (pH= 7.0, 7.2, 7.4, 7.6, 7.8)



Fig. S13 pH stability of the H<sub>2</sub>L1 in DMSO.



Fig. S14 pH stability of the Complex I in DMSO.