Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information

pKa of Alcohols Dictate their Reactivity with Reduced Uranium-substituted Thiomolybdate Clusters

Kamaless Patra, William W. Brennessel, and Ellen M. Matson*

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States

* Corresponding author

Supporting Information Table of Contents

Table S1. Crystallographic parameters for molecular structures of complexes for (Cp* ₃ Mo ₃ S ₄)Cp*U(OMe), (Cp* ₃ Mo ₃ S ₄)Cp*U(OPh ^{Cl2}), (Cp* ₃ Mo ₃ S ₄)Cp*U(OPh) ₂ , and
$(Cp*_{3}Mo_{3}S_{4})U(O'Bu)_{3}S3$
Figures S1. ¹ H NMR spectrum of (Cp* ₃ Mo ₃ S ₄)Cp*U(OMe) in C ₆ D ₆ S4
Figures S2. ¹ H NMR characterization of the evolved H_2 gas from the reaction mixture of $(Cp*_3Mo_3S_4)UCp*$ and methanol in C_6D_6
Figures S3 and S4. ¹ H and ² H NMR characterization of (Cp* ₃ Mo ₃ S ₄)Cp*U(OCD ₃)S5
Figure S5. ² H NMR characterization of the evolved D_2 gas from the reaction mixture of $(Cp*_3Mo_3S_4)UCp*$ and CD_3OD in C_6H_6
Figure S6. ¹ H NMR spectrum of the reaction mixture containing (Cp* ₃ Mo ₃ S ₄)UCp* and 1.1 equivalent of phenol in C ₆ D ₆ S6
Figure S7. ¹ H NMR spectrum of $(Cp*_{3}Mo_{3}S_{4})Cp*U(OPh)_{2}$ in $C_{6}D_{6}$ S7
Figure S8. ¹ H NMR spectrum of (Cp* ₃ Mo ₃ S ₄)Cp*U(OPh) in C ₆ D ₆ S7
Figure S9. ¹ H NMR spectrum of $(Cp*_{3}Mo_{3}S_{4})Cp*U(OPh)_{2}$ obtained from the reaction of $(Cp*_{3}Mo_{3}S_{4})Cp*U(OPh)$ with 1 equivalent of phenol in $C_{6}D_{6}$
Figure S10. ¹ H NMR spectrum of the reaction mixture containing (Cp* ₃ Mo ₃ S ₄)UCp* and 2 equivalents methanol in toluene-d ₈ S8
Figure S11. ¹ H NMR spectrum of the reaction mixture containing (Cp* ₃ Mo ₃ S ₄)UCp* and 3 equivalents methanol in toluene-d ₈ S9
Figure S12. ¹ H NMR spectrum of $(Cp*_{3}Mo_{3}S_{4})Cp*U(OPh^{Cl2})$ in $C_{6}D_{6}$
Figure S13. ¹ H NMR spectrum of the reaction mixture of $(Cp*_{3}Mo_{3}S_{4})UCp*$ with 1 equiv of <i>tert</i> - butanol in $C_{6}D_{6}$
Figure S14. ¹ H NMR spectrum of the crude reaction mixture containing (Cp* ₃ Mo ₃ S ₄)UCp* and 3 equivalent of <i>tert</i> -butanol in C ₆ D ₆ S11
Figure S15. ¹ H NMR spectrum of the $(Cp*_{3}Mo_{3}S_{4})U(O'Bu)_{3}$ in $C_{6}D_{6}$ S11
Figure S16. ¹ H NMR spectrum of the (Cp* ₃ Mo ₃ S ₄)Cp*U(O'Bu) in C ₆ D ₆ S12
Figure S17. Stacked ¹ H NMR spectra of the reaction mixture containing $(Cp*_{3}Mo_{3}S_{4})UCp*$ and 1 equivalent of <i>tert</i> -butanol with $(Cp*_{3}Mo_{3}S_{4})Cp*U(O'Bu)$ in $C_{6}D_{6}$
Figure S18. ¹ H NMR spectrum of the (Cp* ₃ Mo ₃ S ₄)Cp*U(OC(CF ₃) ₃) in C ₆ D ₆ S13
Figure S19. ¹⁹ F $\{^{1}H\}$ NMR spectrum of the (Cp* ₃ Mo ₃ S ₄)Cp*U(OC(CF ₃) ₃) in C ₆ D ₆ S13

Compound	(Cp* ₃ Mo ₃ S ₄)Cp*U(OMe)	$(Cp\ast_{3}Mo_{3}S_{4})Cp\ast U(OPh^{Cl2})$	$(Cp*_{3}Mo_{3}S_{4})Cp*U(OPh)_{2}$	$(Cp\ast_{3}Mo_{3}S_{4})U(O'Bu)_{3}$
Empirical formula	$C_{41}H_{63}Mo_3OS_4U$	C _{56.50} H ₇₅ Cl ₂ Mo ₃ O S ₄ U	$C_{58}H_{70}D_6Mo_3O_2S_4U$	$C_{42}H_{72}Mo_{3}O_{3}S_{4}U$
Formula weight	1226.00	1495.15	1465.31	1279.08
Temperature	100.00(10) K	100.00(10) K	100.00(10) K	100.00(10) K
Wavelength	1.54184 Å	1.54184 Å	1.54184 Å	1.54184 Å
Crystal system	monoclinic	monoclinic	orthorhombic	monoclinic
Space group	$P2_{1}/n$	P21/c	P2 ₁ 2 ₁ 2 ₁	$P2_{1}/n$
Unit cell dimensions	$ \begin{array}{l} a = 11.17593(8) \mathring{A} \\ b = 19.26021(16) \mathring{A} \\ c = 20.25129(16) \\ \alpha = 90^{\circ} \\ \beta = 99.7002(7)^{\circ} \\ \mathring{A} \gamma = 90^{\circ} \end{array} $	a = 11.11244(9) Å b = 20.41551(16) Å c = 24.6678(2) Å $a = 90^{\circ}$ $\gamma = 90^{\circ}$ $\beta = 97.3244(8)^{\circ}$	$ \begin{array}{l} a = 10.99181(6) \ \mathring{A} \\ b = 20.28569(11) \ \mathring{A} \\ c = 24.73170(15) \ \mathring{A} \\ a = 90^{\circ} \\ \beta = 90^{\circ} \\ \gamma = 90^{\circ} \end{array} $	a = 10.97728(7) Å b = 17.85746(11) Å c = 24.61165(16) Å $a = 90^{\circ}$ $\beta = 96.2794(6)^{\circ}$ $\gamma = 90^{\circ}$
Volume / Å ³	4296.78(6)	5550.63(8)	5514.59(5)	4795.59(5)
Ζ	4	4	4	4
Crystal Size	0.103 x 0.053 x 0.027 mm ³	0.169 x 0.028 x 0.019 mm ³	0.138 x 0.038 x 0.015 mm ³	0.127 x 0.065 x 0.011 mm ³
Reflections collected	62579	92991	63887	80766
Independent reflections	9171 [<i>R</i> (int) = 0.0510]	11963 [R(int) = 0.0516]	11807 [R(int) = 0.0481]	10319 [<i>R</i> (int) = 0.0533]
Completeness $(\theta = 74.5^{\circ})$	99.7%	99.9%	99.9%	99.9%
Goodness-of- fit on F^2	1.042	1.052	1.057	1.025
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0457, wR2 = 0.1110	R1 = 0.0286, wR2 = 0.0704	R1 = 0.0249, wR2 = 0.0541	R1 = 0.0249, wR2 = 0.0581
Largest diff. peak and hole	3.004 and -3.149 e.Å ⁻³	4.102 and -2.074 e.Å ⁻³	1.454 and -0.874 e.Å ⁻³	1.219 and -1.055 e.Å ⁻³

Figure S1. ¹H NMR spectrum (400 MHz) of (Cp*₃Mo₃S₄)Cp*U(OMe) in C₆D₆.

Figure S2. ¹H NMR spectrum (400 MHz) of (Cp*₃Mo₃S₄)UCp* and C₆D₆ solution having 1 equivalent of methanol in C₆D₆. [Signals δ = 4.50 ppm is assigned to H₂ (~88% yield).

Figure S3. ¹H NMR spectrum (400 MHz) of (Cp*₃Mo₃S₄)Cp*U(OCD₃) in C₆D₆.

Figure S4. ²H NMR spectrum (400 MHz) of $(Cp*_{3}Mo_{3}S_{4})Cp*U(OCD_{3})$ in $C_{6}H_{6}$ [The signal at 115.74 ppm is attributed to the $-OCD_{3}$].

Figure S5. ²H NMR spectrum (400 MHz) of the reaction mixture containing a C₆H₆ solution of $(Cp*_{3}Mo_{3}S_{4})UCp*$ and a C₆H₆ solution with slightly more than 1 equivalent of CD₃OD [C₆D₆ was added as an internal reference; $\delta = 4.67$ ppm is assigned to D₂].

Figure S6. ¹H NMR spectrum (400 MHz) of the reaction mixture containing $(Cp*_3Mo_3S_4)UCp*$ and ~1.1 equivalent of phenol in C₆D₆. Signals at 28.99, 18.63, 14.85, 5.48 and -2.75 ppm correspond to $(Cp*_3Mo_3S_4)Cp*U(OPh)$, whereas signals at 12.47, 9.18, 8.44, 6.72 and 2.19 ppm correspond to $(Cp*_3Mo_3S_4)Cp*U(OPh)_2$.

Figure S7. ¹H NMR spectrum (400 MHz) of $(Cp*_{3}Mo_{3}S_{4})Cp*U(OPh)_{2}$ in $C_{6}D_{6}$.

Figure S8. ¹H NMR spectrum (400 MHz) of $(Cp*_{3}Mo_{3}S_{4})Cp*U(OPh)$ in $C_{6}D_{6}$.

Figure S9. ¹H NMR spectrum (400 MHz) of $(Cp*_{3}Mo_{3}S_{4})Cp*U(OPh)_{2}$ obtained from the reaction of $(Cp*_{3}Mo_{3}S_{4})Cp*U(OPh)$ with 1 equivalent of phenol in $C_{6}D_{6}$.

Figure S10. ¹H NMR spectrum (400 MHz) (with slow relaxation time) of the reaction mixture containing $(Cp_{3}Mo_{3}S_{4})UCp^{*}$ and 2 equivalents methanol. (The signals at 18.10 and 1.97 ppm are assigned to $[(Cp_{3}Mo_{3}S_{4})^{+}U(OMe)_{5}^{-}]$ or $[(Cp_{3}Mo_{3}S_{4})U(OMe)_{5}]$; signals at 5.90 and -5.32 correspond to $[(Cp_{3}Mo_{3}S_{4})Cp^{*}U(OMe)]$; and signals at 0.98, 1.72 and 1.79 ppm assigned to $Cp^{*}H$.

Figure S11. ¹H NMR spectrum (400 MHz) of the reaction mixture containing $(Cp*_{3}Mo_{3}S_{4})UCp*$ and 3 equivalents methanol.

Figure S13. ¹H NMR spectrum (400 MHz) (with slow relaxation time) of the reaction mixture containing $(Cp*_{3}Mo_{3}S_{4})UCp*$ and 1 equivalent of *tert*-butanol in $C_{6}D_{6}$. The signals at 6.26, and 1.76 ppm correspond to $(Cp*_{3}Mo_{3}S_{4})U(O'Bu)_{3}$; signals at 4.54, -3.24, and 36.63 ppm correspond to proposed $(Cp*_{3}Mo_{3}S_{4})Cp*U(O'Bu)$ ($(Cp*_{3}Mo_{3}S_{4})U(O'Bu)_{3}$: $(Cp*_{3}Mo_{3}S_{4})Cp*U(O'Bu) \sim 5:1$) (see figure S20 for the ¹H NMR spectrum of pure $(Cp*_{3}Mo_{3}S_{4})Cp*U(O'Bu)$; signals at 1.80, 1.75, and 0.99 ppm correspond Cp*H; signals at -0.45 and -7.90 ppm correspond to $(Cp*_{3}Mo_{3}S_{4})UCp*$.

Figure S14. ¹H NMR spectrum (400 MHz) (with slow relaxation time) of the crude reaction mixture containing ($Cp*_{3}Mo_{3}S_{4}$)UCp* and 3 equivalent of *tert*-butanol in $C_{6}D_{6}$ [products: ($Cp*_{3}Mo_{3}S_{4}$)U(O'Bu)₃ and Cp*H].

Figure S15. ¹H NMR spectrum (500 MHz) of the $(Cp*_{3}Mo_{3}S_{4})U(O'Bu)_{3}$ in $C_{6}D_{6}$.

Figure S17. Stacked ¹H NMR spectra (500 MHz) of A) the reaction mixture containing $(Cp*_{3}Mo_{3}S_{4})UCp*$ and 1 equivalent of *tert*-butanol and B) $(Cp*_{3}Mo_{3}S_{4})Cp*U(O'Bu)$ in $C_{6}D_{6}$ [* signals represent the minor component $(Cp*_{3}Mo_{3}S_{4})Cp*U(O'Bu)$ in the reaction mixture (A)].

Figure S18. ¹H NMR spectrum (400 MHz) of $(Cp*_{3}Mo_{3}S_{4})Cp*U(OC(CF_{3})_{3})$ in $C_{6}D_{6}$ (The signal at 4.46 ppm is assigned to H₂).

Figure S19. ${}^{19}F{}^{1}H$ NMR spectrum of the $(Cp*_3Mo_3S_4)Cp*U(OC(CF_3)_3)$ in C_6D_6 .

1