

Figure S1 (a) TEM image, line scan elemental analysis spectrum of (b) Ti, (c) Fe, (d) O elements in MIL-100(Fe)/TiO₂.

Figure S2 TEM images of MIL-100(Fe)/TiO₂ synthesized at (a) 140 $^{\circ}$ C and (b and c)280 $^{\circ}$ C.

Figure S3 SEM images of MIL-100(Fe)/TiO₂/CoO_x after (a) 4 and (b) 18 hours of photocatalytic reaction.

Figure S4. N₂ adsorption-desorption isotherms of (a) MIL-100(Fe), (b) MIL-100(Fe)/TiO₂ (c) MIL-100(Fe)/TiO₂/CoO_x samples.

Figure S5 Reusability results of the O_2 production for the MIL-100(Fe)/TiO₂/CoO_x20 sample.

Photocatalysts	Condition	OER (µmol h ⁻¹ g ⁻¹)	Refs
MIL100(Fe)/TiO ₂ /CoO x	10 mg, 0.1 M FeCl ₃ , 300 W Xe lamp as the light source	558.3	This work
Ov-WO ₃ -Pt	50 mg, 0.1 M Na ₂ S ₂ O ₈ , pH 10.5 adjusted by NaOH	683	[1]
CN/a-ZnO	under simulated sunlight irradiation	532.4	[2]
Ag ₃ PO ₄ /TiO ₂	50 mg catalyst in 50 mL solution under illumination by a 300W Xe-lamp	537	[3]
FeOOH/BiOBr	300 W simulated sunlight using AgNO ₃ as the sacrificial agent	284.34	[4]
TiO ₂ /C HNTs	under simulated solar light irradiation	539	[5]
5% CoO_x/α -Fe ₂ O ₃	visible light ($\lambda > 400$ nm) using AgNO ₃ as the electron scavenger	195.19	[6]
Cu/ZIS/TiO ₂	300 W Xe lamp as the light source	292.75	[7]
r-TiO ₂	5 mg of catalyst in 30 mL of 0.02 M AgNO ₃ solution under a 300 W Xe lamp	71.9	[8]
Ni SA- NG/SrTiO ₃ (Al)/CoO _x	Full arc irradiation	230	[9]
RuO _x /CoO _x /Ta ₃ N ₅	50 mg, 0.1 M Na ₂ S ₂ O ₈ , under visible light irradiation (420 $< \lambda < 800$ nm)	159	[10]

Table S1 Comparison of photocatalytic oxygen evolution performance of MIL- $100(Fe)/TiO_2/CoO_x$ with other reported photocatalysts.

Reference

1. Z. Wei, W. C. Wang, W. L. Li, X. Q. Bai, J. F. Zhao, E. C. M. Tse, D. L. Phillips and Y. F. Zhu, *Angewandte Chemie-International Edition*, 2021, **60**, 8236-8242.

2. B. X. Zhou, S. S. Ding, K. X. Yang, J. Zhang, G. F. Huang, A. L. Pan, W. Y. Hu, K. Li and W. Q. Huang, *Advanced Functional Materials*, 2021, **31**.

3. Y. K. Zhu, Y. Zhuang, L. L. Wang, H. Tang, X. F. Meng and X. L. She, *Chinese Journal of Catalysis*, 2022, **43**, 2558-2568.

4. F. X. Xie, Q. Xi, M. Zhang, R. Li, X. M. Gao, H. F. Li, X. C. Zhang, Y. W. Wang, Y. F. Wang, X. P. Yue, J. X. Liu and C. M. Fan, *Separation and Purification Technology*, 2024, **328**.

5. Z. Q. Liang, X. J. Bai, P. Hao, Y. C. Guo, Y. J. Xue, J. Tian and H. Z. Cui, *Applied Catalysis B-Environmental*, 2019, **243**, 711-720.

6. L. Li, X. J. She, J. J. Yi, L. Pan, K. X. Xia, W. Wei, X. W. Zhu, Z. G. Chen, H. Xu and H. M. Li, *Applied Surface Science*, 2019, **469**, 933-940.

Y. J. He, T. P. Lv, T. Zhou, B. Liu, B. Xiao, H. S. Zheng, B. Y. Zi, J. Zhang, Y. M. Zhang, G. L. Zhang and Q. J. Liu, *International Journal of Hydrogen Energy*, 2024, 57, 491-499.

8. B. Fu, Z. J. Wu, K. Guo and L. Y. Piao, *Nanoscale*, 2021, 13, 8591-8599.

9. Y. X. Liu, X. J. Xu, S. F. Zheng, S. C. Lv, H. W. Li, Z. C. Si, X. D. Wu, R. Ran, D. Weng and F. Y. Kang, *Carbon*, 2021, **183**, 763-773.

E. Nurlaela, H. Wang, T. Shinagawa, S. Flanagan, S. Ould-Chikh, M. Qureshi, Z. Mics, P. Sautet, T. Le Bahers, E. Cánovas, M. Bonn and K. Takanabe, *Acs Catalysis*, 2016, 6, 4117-4126.

-43