Electronic Supporting Information (ESI)

Syntheses, XRD- and DFT studies on Pb[ChCN]₂ (Ch=O, S, Se) and Pb[SeCN][OH]

Alena Shlyaykher^a, Aleksandar Zivkovic^b, Hennes Günther^a, Anna Lea Barba^a, Nora H. de Leeuw^b, and Frank Tambornino^{*a}

Email: Frank.Tambornino@chemie.uni-marburg.de

^a Philipps-Universität Marburg, Hans-Meerwein Straße 4, Marburg, DE-35032. ^bDepartment of Earth Sciences, Utrecht University, 3548CB Utrecht, The Netherlands;

^{c.} Institute of Inorganic Chemistry, Christian-Albrecht University of Kiel, 24118 Kiel, Germany.

Contents

Further details on quantum mechanical calculations	2
-	
Collected Raman spectra	4
1	
Additional crystallographic details	6
	Further details on quantum mechanical calculations Collected Raman spectra Additional crystallographic details

1. Further details on quantum mechanical calculations

Table S1: Calcula	ted and experimental Rai	man frequencies and intensities	of Pb[SeCN]2, Pb[SeCN][OH],	and Pb[OCN]2.
	Pb[SeCN]2	Pb[SeCN][OH]	Pb[OCN]2	_

Symm	Calc. v	Calc. I	Exp	Symm	Calc. v	Calc. I	Exp	Symm	Calc. v	Calc. I	Exp
B2g	27	84		Ag	46	202		B1g	31	280	
B1g	29	1		B3g	48	125		B2g	37	7	
Ag	34	630		B1g	50	183		Ag	59	143	
Ag	49	136		B2g	59	983		Ag	72	105	
B3g	54	1		B1g	70	236		B3g	77	48	
B3g	74	47		B2g	74	357		B1g	108	62	
Ag	81	198		Ag	82	199		B3g	109	29	
B1g	85	152		B3g	83	0		Ag	116	686	
B2g	86	421		Ag	94	787	74	B2g	126	29	
B3g	89	93		B3g	107	44		B1g	139	10	
B1g	89	6		Ag	113	1000	99	B3g	139	14	
B2g	95	5		B3g	120	64		B2g	141	14	
Ag	105	925	89	B2g	122	605		Ag	144	1000	100
B3g	112	383		B1g	122	330		B3g	149	27	
Ag	116	679	132	Ag	149	856	129	B3g	154	67	
B3g	127	11		B3g	158	48		B2g	169	228	125
B1g	127	154		B3g	279	12		Ag	173	25	
B3g	130	205		Ag	280	128	255	B1g	178	15	
Ag	132	318		B2g	295	13		B3g	181	77	
B2g	134	39		B1g	296	33		Ag	186	137	
Ag	160	324		Ag	331	291	331	Ag	206	266	149
B2g	169	30		B3g	333	2		B2g	206	159	
B1g	173	437		B2g	406	1		B3g	215	94	
B3g	181	2		B1g	408	4		B1g	216	368	207
B3g	195	149		B3g	416	1		Ag	236	109	
Ag	204	258		Ag	417	12	401	B3g	316	15	
B1g	396	8		B3g	585	6		Ag	638	40	611
B2g	398	0		Ag	593	89	563	B3g	643	1	
B3g	407	3		B1g	616	3		B2g	644	1	
Ag	409	3		B2g	617	24		B1g	646	4	
Ag	415	40	405	Ag	735	29		B1g	651	3	
B2g	416	0		B3g	757	83	794	Ag	653	11	630
B1g	420	9		Ag	2181	464	2095	B2g	654	5	
B3g	421	0		B3g	2184	539		B3g	656	0	
B3g	567	13		Ag	3712	147	3531	Ag	1309	19	
Ag	567	68	557	B3g	3713	8	3677	B3g	1312	0	
B3g	616	5						B3g	1328	69	
Ag	618	16						Ag	1340	399	1319
Ag	2159	1000	2105					Ag	2191	96	2090
B3g	2169	1						B3g	2210	83	2113
Ag	2224	394	2149					Ag	2230	269	2131
B3g	2224	182						B3g	2308	0	

Pb[SCN] ₂						
Symm	Calc. v	Calc. I	Exp			
Bg	31	195				
Ag	48	350				
Bg	87	291	76			
Ag	93	265				
Bg	96	430				
Bg	114	500	104			
Ag	126	180				
Bg	142	319				
Ag	158	712				
Ag	165	1000	156			
Bg	167	26				
Bg	190	202				
Ag	209	410				
Bg	475	3				
Ag	489	4				
Ag	491	15	480			
Bg	493	9				
Ag	783	97	759			
Bg	785	9				
Ag	2107	730	2034			
Bg	2109	600				

 Table S2: Calculated and experimental Raman properties of Pb[SCN]2.

2. Collected Raman spectra

Figure S1: Raman spectrum of Pb[OCN]2 collected on microcrystalline powder with 633 nm laser at room temperature.

Figure S2: Raman spectrum of Pb[SCN]₂ collected on microcrystalline powder with 532 nm laser at room temperature. *: satellites caused by equipment construction.

Figure S3: Raman spectrum of Pb[SeCN]₂ collected on single crystal with 532 nm laser at room temperature. *: impurity of Pb[SeCN][OH].

3. Additional crystallographic details

G	c), and i b[Secr	ij[011].	
	Pb[OCN]2 ^[a, b]	Pb[SeCN]2 ^[a, b]	Pb[SeCN][OH] ^[a, c]
Formula	C2 N2 O2 Pb	C2 N2 Se2 Pb	C H N Se Pb
Fw / g mol ⁻¹	123.02	212.85	335.87
Crystal system	orthorhombic	orthorhombic	orthorhombic
Space group	<i>Pnma</i> (№ 62)	<i>Pnma</i> (№ 62)	<i>Pnma</i> (№ 62)
<i>a</i> / Å	8.62373(15)	12.6574(5)	8.66931(11)
b / Å	3.98198(6)	4.30312(13)	4.19306(2)
<i>c</i> / Å	11.72148(18)	10.8393(3)	11.65257(8)
$V / \text{\AA}^3$	402.509(11)	90.38(3)	423.582(6)
Ζ	4	4	4
Radiation, $\lambda / \text{\AA}$	1.54175	1.54175	1.54175
T / K	298(2)	298(2)	298(2)
$R_{ m wp}$ / %	7.51684316	12.1849025	10.1929528
<i>R</i> _p / %	5.53611169	8.92969863	7.6677716
R _{Bragg} / %	5.09365506	4.4688295	5.9381605
GoF	1.35427749	1.02617433	1.09911186
Starting angle measured / ° 2θ	5	5	5
Final angle measured / ° 2θ	90	90	90
Starting angle refined /° 2θ	10	10	10
Final angle refined / ° 2θ	70	70	85
Step width/ ° 20	0.015	0.015	0.015
Refined Parameters	39	51	54
Background Parameters	12	23	18
Profile Parameters	14 ^[b]	10 ^[b]	24 ^[c]

Table S3: Selected powder X-ray diffraction data collection and refinement parameters for Pb[*Ch*CN]₂ (*Ch*=O, Se) and Pb[SeCN][OH]

[a]: The starting model derived from single crystal X-ray data was used as starting point. [OCN]⁻, [SeCN]⁻ and [OH]⁻ anions were modelled as rigid bodies. Thermal expansion parameters for C and N were constrained to the same value. **[b]:** Profile parameters include preferred orientation refinement with spherical harmonics order 4. **[c]:** Profile parameters include preferred orientation refinement with spherical harmonics order 8.

Table S4: Selected single crystal X-ray data collection and refinement parameters for Pb[ChCN]₂ (Ch=O, S, Se), and Pb[SeCN][OH].

<u>v</u>	Pb[OCN] ₂	Pb[SCN] ₂	Pb[SeCN] ₂	Pb[SeCN][OH]
Formula	$C_2N_2O_2Pb$	$C_2N_2PbS_2$	$C_2N_2PbSe_2$	C H N O Pb Se
CCDC	2383820	2383821	2383822	2383823
Fw / g mol ⁻¹	291.23	323.35	417.15	329.18
Crystal system	orthorhombic	monoclinic	orthorhombic	orthorhombic
Space group	Pnma	C2/c	Pnma	Pnma
<i>a</i> / Å	8.5689(18)	9.6128(9)	12.479(2)	8.6244(2)
b / Å	3.9410(9)	6.5306(6)	4.2277(9)	4.1674(4)
<i>c</i> / Å	16.660(3)	8.1913(7)	10.6523(17)	11.5412(6)
eta / °	_	92.734(7)		
$V/ m \AA^3$	393.74(17)	513.64(8)	562.00(17)	414.81(5)
Ζ	4	4	4	4
Radiation, $\lambda / \text{\AA}$	0.71073	0.71073	0.71073	0.71073
Temp / K	100	100	100	180.15
$ ho_{calc}$ / g cm ⁻³	4.913	4.181	4.930	5.271
μ / mm ⁻¹	42.695	33.507	42.835	49.251
Reflections collected	6464	5951	12950	11581
Ind. Reflns. / Ind. Reflns gt	760 / 517	786 / 763	912/850	800 / 719
Parameters	43	34	43	35
$R_{int} / R_{(\sigma)}$	0.0993 / 0.0643	0.0165 / 0.0084	0.0855 / 0.0269	0.0473 / 0.0203
$R1/wR2$, ^[a] $I \ge 2\sigma I$ (%)	0.0415 / 0.0931	0.0124 / 0.0303	0.0377 / 0.0935	0.0232 / 0.0551
<i>R</i> 1/ <i>wR</i> 2, ^[a] all data (%)	0.0641 / 0.0970	0.0130 / 0.0304	0.0397 / 0.0948	0.0268 / 0.0555
GOF	0.89980	1.16785	1.142	1.08358
Twin law				
BASF				
Flack parameter	_			

 $\frac{|\mathbf{a}| \mathbf{R}_{1} = [\Sigma||F_{o}| - |F_{c}||]/\Sigma|F_{o}|; \text{ wR2} = \{[\Sigma w[(F_{o})^{2} - (F_{c})^{2}]^{2}]/[\Sigma w(F_{o}^{2})^{2}\}^{1/2}; w = [\sigma^{2}(F_{o})^{2} + (AP)^{2} + BP]^{-1}, \text{ where } P = [(F_{o})^{2} + 2(F_{c})^{2}]/3 \text{ and the A and B values are 0.0610 and 0 for Pb[OCN]_{2}; 0.0219 and 0 for Pb[SCN]_{2}; 0.0387 and 0 for Pb[SeCN][OH]; 0.0684 and 0 Pb[SeCN]_{2}.$

Figure S4: Temperature depended powder X-ray diffraction of Pb[OCN]2.

Figure S5: Temperature depended powder X-ray diffraction of Pb[SeCN]₂.

4. UV-Vis spectroscopic data

Figure S6: Kubelka-Munk plots of Pb[OCN]2, Pb[SCN]2, Pb[SeCN]2 and Pb[SeCN][OH].