Supporting Information

Reactions of a Geminal Sc/P Lewis Pair with Pyridotetrazole

and Beyond

Yiwen Guan, Xian Xu, Xin Xu*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.

R. China.

*E-mail: xinxu@suda.edu.cn

X-ray crystal structure analysis of complex 2: formula $C_{49}H_{65}N_3O_2PSc$, M = 803.97 gmol⁻¹, colorless, $0.08 \times 0.06 \times 0.05$ mm, orthorhombic, space group *Pbca*, a =

22.0487(8), b = 18.0563(8), c = 22.8495(9) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 9096.8(6)Å³, $\rho_{calc} = 1.174$ gcm⁻³, $\mu = 0.237$ mm⁻¹, empirical absorption correction ($0.5132 \le T \le 0.7456$), Z = 8, $\lambda = 0.71073$ Å, T = 273.15 K, 86418 reflections collected ($-26 \le h \le 26$, $-21 \le k \le 21$, $-26 \le 1 \le 27$), 8024 independent ($R_{int} = 0.1527$) and 5350 observed reflections [$I > 2\sigma(I)$], 520 refined parameters, the final R_I was 0.0835 [$I > 2\sigma(I)$] and wR_2 was 0.1483 (all data), max. (min.) residual electron density 0.47 (-0.30) e Å⁻³, hydrogen atoms were placed in calculated positions and refined using a riding model.

Fig. S4. Molecular structure of complex 2.

X-ray crystal structure analysis of complex 3: formula $C_{91}H_{125}N_5O_4P_2Sc_2$, M = 1504.81 gmol⁻¹, colorless, $0.1 \times 0.06 \times 0.04$ mm, monoclinic, space group $P2_1/c$, a = 1504.81 gmol⁻¹, colorless, $0.1 \times 0.06 \times 0.04$ mm, monoclinic, space group $P2_1/c$, a = 1504.81 gmol⁻¹, colorless, $0.1 \times 0.06 \times 0.04$ mm, monoclinic, space group $P2_1/c$, a = 1504.81 gmol⁻¹, colorless, $0.1 \times 0.06 \times 0.04$ mm, monoclinic, space group $P2_1/c$, a = 1504.81 gmol⁻¹, colorless, $0.1 \times 0.06 \times 0.04$ mm, monoclinic, space group $P2_1/c$, a = 1504.81 gmol⁻¹, colorless, $0.1 \times 0.06 \times 0.04$ mm, monoclinic, space group $P2_1/c$, a = 1504.81 gmol⁻¹, colorless, $0.1 \times 0.06 \times 0.04$ mm, monoclinic, space group $P2_1/c$, a = 1000 gmol⁻¹, $P2_1/c$, $P2_1/c$

25.380(7), b = 12.984(3), c = 29.626(7) Å, $\alpha = 90^{\circ}$, $\beta = 113.566(9)^{\circ}$, $\gamma = 90^{\circ}$, V = 8949(4)Å³, $\rho_{calc} = 1.117$ gcm⁻³, $\mu = 1.345$ mm⁻¹, empirical absorption correction (0.4742 $\leq T \leq$ 0.7518), Z = 4, $\lambda = 1.34139$ Å, T = 150.15 K, 115653 reflections collected (-30 $\leq h \leq$ 30, -15 $\leq k \leq 13$, -35 $\leq 1 \leq 35$), 15791 independent ($R_{int} = 0.1543$) and 11936 observed reflections [$I > 2\sigma(I)$], 969 refined parameters, the final R_I was 0.0786 [$I > 2\sigma(I)$] and wR_2 was 0.2258 (all data), max. (min.) residual electron density 0.65 (-0.78) e Å⁻³, hydrogen atoms were placed in calculated positions and refined using a riding model.

Fig. S8. Molecular structure of complex 3.

Fig. S11. ³¹P{¹H} NMR (162 MHz, C₆D₆/Bromobenzene- $d_5 = 5:1, 298$ K).

X-ray crystal structure analysis of complex 4: formula $C_{56}H_{69}N_3O_2PSc$, M = 892.07 gmol⁻¹, colorless, $0.16 \times 0.14 \times 0.13$ mm, monoclinic, space group $P2_1/n$, a =

11.2105(4), b = 23.0554(9), c = 19.3556(7) Å, $a = 90^{\circ}$, $\beta = 97.0520(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 4964.9(3) Å³, $\rho_{calc} = 1.193$ gcm⁻³, $\mu = 0.224$ mm⁻¹, empirical absorption correction $(0.4657 \le T \le 0.7456)$, Z = 4, $\lambda = 0.71073$ Å, T = 119.99 K, 83669 reflections collected $(-14 \le h \le 14, -29 \le k \le 29, -25 \le 1 \le 25)$, 11378 independent ($R_{int} = 0.1215$) and 7350 observed reflections [$I > 2\sigma(I)$], 583 refined parameters, the final R_I was 0.0497 [$I > 2\sigma(I)$] and wR_2 was 0.1405 (all data), max. (min.) residual electron density 0.37 (-0.51) e Å⁻³, hydrogen atoms were placed in calculated positions and refined using a riding model.

Fig. S12. Molecular structure of complex 4.

X-ray crystal structure analysis of complex 5: formula $C_{52}H_{67}NO_2PSc$, M = 813.99 gmol⁻¹, colorless, $0.20 \times 0.17 \times 0.15$ mm, monoclinic, space group C2/c, a = 41.923(3),

b = 10.2466(5), c = 22.4660(12) Å, $\alpha = 90^{\circ}, \beta = 98.649(5)^{\circ}, \gamma = 90^{\circ}, V = 9541.0(9)$ Å³, $\rho_{calc} = 1.133$ gcm⁻³, $\mu = 1.279$ mm⁻¹, $Z = 8, \lambda = 1.34138$ Å, T = 120.0 K, 60208 reflections collected (-49 \leq h \leq 50, -12 \leq k \leq 12, -27 \leq 1 \leq 27), 8780 independent ($R_{int} = 0.1128$) and 5507 observed reflections [$I > 2\sigma(I)$], 533 refined parameters, the final R_I was 0.0569 [$I > 2\sigma(I)$] and wR_2 was 0.1493 (all data), max. (min.) residual electron density 0.32 (-0.46) e Å⁻³, hydrogen atoms were placed in calculated positions and refined using a riding model.

Fig. S16. Molecular structure of complex 5.

Fig. S17. ¹H NMR (400 MHz, C₆D₆, 298 K).

X-ray crystal structure analysis of complex 6: formula $C_{48}H_{71}N_3O_2PScSi \cdot 0.5C_7H_8$, $M = 872.16 \text{ gmol}^{-1}$, colorless, $0.17 \times 0.16 \times 0.15 \text{ mm}$, triclinic, space group P_{-1} , a =

11.2343(5), b = 11.7686(6), c = 21.1672(10) Å, $\alpha = 78.026(2)^{\circ}$, $\beta = 78.416(2)^{\circ}$, $\gamma = 68.270(2)^{\circ}$, V = 2519.3(2) Å³, $\rho_{calc} = 1.150$ gcm⁻³, $\mu = 1.381$ mm⁻¹, empirical absorption correction (0.6409 $\leq T \leq 0.7506$, Z = 2, $\lambda = 1.34138$ Å, T = 120.0 K, 85193 reflections collected (-13 \leq h \leq 13, -14 \leq k \leq 14, -25 \leq 1 \leq 25), 9302 independent ($R_{int} = 0.0881$) and 6625 observed reflections [$I > 2\sigma(I)$], 588 refined parameters, the final R_I was 0.0490 [$I > 2\sigma(I)$] and wR_2 was 0.1287 (all data), max. (min.) residual electron density 0.33 (-0.41) e Å⁻³, hydrogen atoms were placed in calculated positions and refined using a riding model.

Fig. S20. Molecular structure of complex 6.

X-ray crystal structure analysis of complex 7a: formula $C_{53}H_{72}N_4O_2PSc$, M = 873.07 gmol⁻¹, colorless, $0.18 \times 0.16 \times 0.15$ mm, monoclinic, space group $P2_1$, a = 10.1260(5),

b = 22.6532(11), c = 21.7871(11) Å, $\alpha = 90^{\circ}, \beta = 101.164(2)^{\circ}, \gamma = 90^{\circ}, V = 4903.1(4)$ Å³, $\rho_{calc} = 1.183$ gcm⁻³, $\mu = 1.276$ mm⁻¹, empirical absorption correction (0.6366 $\leq T \leq 0.7506$), $Z = 4, \lambda = 1.34138$ Å, T = 120.0 K, 127635 reflections collected (-12 $\leq h \leq 12, -27 \leq k \leq 27, -26 \leq 1 \leq 26$), 18016 independent ($R_{int} = 0.0900$) and 13778 observed reflections [$I > 2\sigma(I)$], 1136 refined parameters, the final R_I was 0.0500 [$I > 2\sigma(I)$] and wR_2 was 0.1257 (all data), max. (min.) residual electron density 0.31 (-0.60) e Å⁻³, hydrogen atoms were placed in calculated positions and refined using a riding model.

Fig. S24. Molecular structure of complex 7a.

Fig. S25. ¹H NMR (400 MHz, C₆D₆, 298 K).

X-ray crystal structure analysis of complex 7b: formula $C_{54}H_{76}N_4O_2PSc \cdot 0.5C_7H_8$, $M = 935.18 \text{ gmol}^{-1}$, colorless, $0.16 \times 0.15 \times 0.14 \text{ mm}$, triclinic, space group P_{-1} , a =

11.2256(5), b = 12.2433(6), c = 22.3628(9) Å, $a = 92.103(2)^{\circ}$, $\beta = 103.575(2)^{\circ}$, $\gamma = 116.889(2)^{\circ}$, V = 2628.2(2) Å³, $\rho_{calc} = 1.182$ gcm⁻³, $\mu = 1.210$ mm⁻¹, empirical absorption correction ($0.6060 \le T \le 0.7506$), Z = 2, $\lambda = 1.34138$ Å, T = 120.0 K, 51906 reflections collected ($-13 \le h \le 13$, $-14 \le k \le 14$, $-26 \le 1 \le 26$), 9651 independent ($R_{int} = 0.1029$) and 6064 observed reflections [$I > 2\sigma(I)$], 639 refined parameters, the final R_I was 0.0648 [$I > 2\sigma(I)$] and wR_2 was 0.1736 (all data), max. (min.) residual electron density 0.47 (-0.58) e Å⁻³, hydrogen atoms were placed in calculated positions and refined using a riding model.

Fig. S28. Molecular structure of complex 7b.

Fig. S29. ¹H NMR (400 MHz, C₆D₆, 298 K).

X-ray crystal structure analysis of complex 8: formula $C_{47}H_{70}N_2O_2PScSi$, M = 799.07 gmol⁻¹, colorless, $0.18 \times 0.16 \times 0.15$ mm, monoclinic, space group C2/c, a =

41.237(4), b = 10.5045(10), c = 21.735(2) Å, $\alpha = 90^{\circ}$, $\beta = 102.852(4)^{\circ}$, $\gamma = 90^{\circ}$, V = 9179.1(15) Å³, $\rho_{calc} = 1.156$ gcm⁻³, $\mu = 0.259$ mm⁻¹, empirical absorption correction (0.6941 $\leq T \leq 0.7455$), Z = 8, $\lambda = 0.71073$ Å, T = 153 K, 66916 reflections collected (- $53 \leq h \leq 53$, $-13 \leq k \leq 12$, $-28 \leq 1 \leq 28$), 10545 independent ($R_{int} = 0.1396$) and 5811 observed reflections [$I > 2\sigma(I)$], 505 refined parameters, the final R_I was 0.0627 [$I > 2\sigma(I)$] and wR_2 was 0.1349 (all data), max. (min.) residual electron density 0.54 (-0.42) e Å⁻³, hydrogen atoms were placed in calculated positions and refined using a riding model.

Fig. S32. Molecular structure of complex 8.